Oct. 22, 2020 第41回IBISML

Inter-University Research Institute Corporation / Research Organization of Information and Systems

National Institute of Informatics

統計的に有意な相互作用探索

杉山 麿人(国立情報学研究所)

Example: Itemset Mining

SNPs (items)

- ID 1: 00110011100111001110 ID 2: 11001011110001010100
- ID 3: 10100011101011000001
- ID 4: 1101101111111010011
- Control ID 5: 00110001100011111000 ID 6: 01011011000011001010 ID 7: 1011001010000101000
 - ID8: 11001001010100010101

Example: Itemset Mining

Example: Subgraph Mining

Timeline

4/31

Recent Advances

- Webb, G.I., Petitjean, F.: A Multiple Test Correction for Streams and Cascades of Statistical Hypothesis Tests, KDD2016
- Pellegrina, L., Vandin, F.: Efficient Mining of the Most Significant Patterns with Permutation Testing, KDD2018
- Pellegrina, L., Riondato, M., Vandin, F.: SPuManTE: Significant Pattern Mining with Unconditional Testing, KDD2019
- Tran, T.Q., Fukuchi, K., Akimoto, Y., Sakuma, J.: Statistically Significant Pattern Mining with Ordinal Utility, KDD2020

Libraries

- CASMAP
 - Llinares-Lopez, et al.: CASMAP: Detection of statistically significant combinations of SNPs in association mapping, Bioinformatics (2019)
- MP-LAMP (for parallel computation)
 - Yoshizoe, K., Terada, A., Tsuda, K.: MP-LAMP: parallel detection of statistically significant multi-loci markers on cloud platforms, Bioinformatics (2018)

Key Challenges:

- 1. How to assess the significance for a multiplicative interaction of variables?
- 2. How to perform multiple testing correction?
 - How to control the FWER (family-wise error rate), the probability to detect one or more false positives?
- 3. How to manage combinatorial explosion $(2^d \text{ for } d \text{ variables})$ of the candidate space?

Problem Formulation

- Define $X_{\mathcal{F}}$ as binary random variable of joint occurrence for a feature combination $\mathcal{F} = \{F_i\}_{i \in I}, I \subseteq \{1, ..., d\}$
 - $X_{\mathcal{F}} = 1$ if \mathcal{F} "occurs", $X_{\mathcal{F}} = 0$ otherwise
- Let *Y* be an output binary variable

Problem Formulation

- Define $X_{\mathcal{F}}$ as binary random variable of joint occurrence for a feature combination $\mathcal{F} = \{F_i\}_{i \in I}, I \subseteq \{1, ..., d\}$
 - $X_{\mathcal{F}} = 1$ if \mathcal{F} "occurs", $X_{\mathcal{F}} = 0$ otherwise
- Let *Y* be an output binary variable
- **Task:** Test the null hypothesis $X_{\mathcal{F}} \perp Y$ for all $\mathcal{F} \in 2^{V}$
 - Testing statistical independence between $X_{\mathcal{F}}$ and Y

Fisher's Exact Test

Multiple Testing Correction

- In each test, [probability of having a false positive] $\leq \alpha$
- If we repeat *m* tests, αm patterns can be false positives
 - Too many if *m* is large! For example in itemset mining:
 - For 100000 items, #patterns = 2^{100000}
 - Set significance level $\alpha = 0.01$
 - Number of false positives: $0.01 \cdot 2^{100000} = 10^{30101}$
- The FWER should be controlled
 - Probability at least one \mathcal{F} is false positive

Controlling the FWER

- FWER = Pr(FP > 0)
 - FP: Number of false positives
- **Objective**: Maximize FWER(δ) subject to FWER(δ) $\leq \alpha$
 - FWER(δ): FWER at corrected significance level δ
 - Cannot be evaluated in closed form (simple but not easy!)
 - Bonferroni correction is popular: $\delta^*_{Bon} = \alpha/m$

• We use Tarone's testability trick, which requires the minimum achievable *p*-value $\psi(\mathcal{F})$ for \mathcal{F}

$$\psi(\mathcal{F}) = {\binom{N_1}{S(\mathcal{F})}} / {\binom{N}{S(\mathcal{F})}}$$
 in Fisher's exact test

$\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}, ..., \mathcal{F}_{m-1}, \mathcal{F}_{m}, \mathcal{F}_{m+1}, ..., \mathcal{F}_{2^{d}} \quad \left(\psi(\mathcal{F}_{i}) \leq \psi(\mathcal{F}_{i+1})\right)$

 $m \psi(\mathcal{F}_m) < \alpha \text{ and } (m+1)\psi(\mathcal{F}_{m+1}) \ge \alpha$

 $\mathcal{F}_1\,,\,\mathcal{F}_2\,,\,\mathcal{F}_3\,\,,...,\,\,\mathcal{F}_{m-1}\,,\,\mathcal{F}_m\,,\,\,\mathcal{F}_{m+1}\,\,,...,\,\,\mathcal{F}_{2^d} \quad \left(\psi(\mathcal{F}_i) \leq \psi(\mathcal{F}_{i+1})\right)$

Tarone's Testability Trick with Apriori

• We use Tarone's testability trick, which requires the minimum achievable *p*-value $\psi(\mathcal{F})$ for \mathcal{F}

$$\psi(\mathcal{F}) = {\binom{N_1}{S(\mathcal{F})}} / {\binom{N}{S(\mathcal{F})}}$$
 in Fisher's exact test

- This method is particularly effective if the relationship "Smaller $\eta(\mathcal{F}) \rightarrow \text{Larger } \psi(\mathcal{F})$ " holds
 - For each pattern \mathcal{F} ,

 $S(\mathcal{F})$: Support (how many times \mathcal{F} occurs in a dataset) $\eta(\mathcal{F}) = S(\mathcal{F})/N$: Frequency

Power of Testability

The PTC (Predictive Toxicology Challenge) dataset with 601 chemical compounds

Summary

- 1. Formulate significance test for each pattern
 - Fisher's exact test is standard, while there are more possibilities
- 2. Enumerate testable patterns via Tarone's testability + Apriori (DFS)
- 3. Test each testable pattern

LAMP and WY light

FACS [Papaxanthos et al. 2016] for Covariates

- Case ID 1: 00110011100111001110 Europe 1
 - ID 2: 11001011110001010100 Europe 1
 - ID 3: 10100011101011000001 Asia 1
 - ID 4: 1101101111111010011 Asia 1
- Control ID 5: 00110001100011111000 Europe 0
 - ID 6: 01011011000011001010 Europe 0
 - ID 7: 101100101000001010000 Asia 0
 - ID 8: 11001001010010010101 Asia 0

FAIS [Llinares-López et al. 2015] for Intervals

FastCHM for Intervals + Cov.

C-Tarone [Sugiyama & Borgwardt, 2019]

• Find all feature interactions form continuous data

Input:		У				
Г	F1	F2	F3	F4	F5	Class

- ID1 -0.96 -3.03 3.38 2.57 -6.06 ... 0
- ID2 –1.80 4.45 –4.35 0.82 8.90 ... 1
- ID3 -3.29 1.39 -4.44 -0.77 2.78 ... 1
- ID4 -0.53 -1.96 -3.43 -4.42 -3.92 ... 0

٠

C-Tarone [Sugiyama & Borgwardt, 2019]

• Find all feature interactions form continuous data

Input:			X				у	
	F1	F2	F3	F4	F5		Class	Output:
ID1	-0.96	-3.03	3.38	2.57	-6.06	•••	0	{F1}, {F3},
ID2	-1.80	4.45	-4.35	0.82	8.90	•••	1	→ {F2, F5},
ID3	-3.29	1.39	-4.44	-0.77	2.78	•••	1	{F2, F5, F6},
ID4	-0.53	-1.96	-3.43	-4.42	-3.92	•••	0	
•			:				:	

Use Copula Support [Tatti, 2013]

Prod. 0.00
0.11
0.00
0.22

$$\int \frac{\text{Sum / 4}}{\text{O.083}} = \Pr(X_{\{\text{F1,F2,F3}\}} = 1) = \eta(\{\text{F1,F2,F3}\})$$

0.23/3

Contingency Tables

- For each pattern (variable combination), we construct two types of contingency tables
 - One is from the expected situation under null
 - The other is from the observed situation from data
- Significance is assessed by comparison of the two tables
 - Each table is represented as a four-dimensional vector

	Expected for 	$\mathbf{p}_{\mathrm{E}} X_{\mathcal{F}} = 1$	$X_{\mathcal{F}} = 0$	Total
	Y = 1	$\eta(\mathcal{F})r_1$	$r_1 - \eta(\mathcal{F}) r_1$	r ₁
	Y = 0	$\eta(\mathcal{F})r_0$	$r_0 - \eta(\mathcal{F}) r_0$	r ₀
	Total	$\eta(\mathcal{F})$	$1 - \eta(\mathcal{F})$	1
Oh	convod for m	V _ 1	V _ 0	Total
UD	served for p_0	$\Lambda_{\mathcal{F}} \equiv 1$	$X_{\mathcal{F}} \equiv 0$	TOLAT
	Y = 1	$\eta(\mathcal{F}, Y = 1)$	$r_1 - \eta(\mathcal{F}, Y =$	= 1) r ₁
	Y = 0	$\eta(\mathcal{F}, Y = 0)$	$r_0 - \eta(\mathcal{F}, Y =$	$= 0) r_0$
	Total	$\eta(\mathcal{F})$	$1 - \eta(\mathcal{F})$	1
				25/3

Significance Test

- The independence $X_{\mathcal{F}} \perp Y$ is translated into:
 - $H_0: D_{\text{KL}}(\boldsymbol{p}_{\text{O}}, \boldsymbol{p}_{\text{E}}) = 0, \quad H_1: D_{\text{KL}}(\boldsymbol{p}_{\text{O}}, \boldsymbol{p}_{\text{E}}) \neq 0$
 - $\boldsymbol{p}_{\rm E}$ and $\boldsymbol{p}_{\rm O}$ are vectorized contingency tables: $\boldsymbol{p}_{\rm E} = \left(\eta(\mathcal{F})r_1, \eta(\mathcal{F})r_0, r_1 - \eta(\mathcal{F})r_1, r_0 - \eta(\mathcal{F})r_0\right)$ $\boldsymbol{p}_{\rm O} = \left(\eta(\mathcal{F}, Y=1), \eta(\mathcal{F}, Y=0), r_1 - \eta(\mathcal{F}, Y=1), r_0 - \eta(\mathcal{F}, Y=0)\right)$
- We apply G-test: the statistic $\lambda = 2ND_{\rm KL}(\boldsymbol{p}_{\rm O}, \boldsymbol{p}_{\rm E})$ follows the χ^2 -distribution with the d.f. 1

KL Divergence Bound

- **Theorem** (tight upper bound of KL divergence): $D_{\rm KL}(\boldsymbol{p}, \boldsymbol{p}_{\rm F})$
 - $< a \log \frac{1}{b} + (b-a) \log \frac{b-a}{(1-a)b} + (1-b) \log \frac{1}{(1-a)}$ - $p_{\rm E} = (ab, a(1-b), (1-a)b, (1-a)(1-b)),$ $p \in \{ p \in \mathcal{P} \mid p_1 + p_2 = a, p_1 + p_3 = b \}$
- The *p*-value for this upper bound is the minimum achievable *p*-value

Exp. Results on Synthetic Data

Exp. Results on Synthetic Data

Experimental Results on Real Data

Experimental Results on Real Data

Conclusion

- Significant pattern mining is introduced
 - Find significant interactions while controlling the FWER
 - pattern mining (data mining) + multiple testing correction (statistics)
- Key to solve the problem is Tarone's testability trick
 - This method can be used if the minimum achievable p-value ψ exists
 - If we have the relationship "Smaller $\eta \rightarrow$ Larger ψ ", Apriori can be used to efficiently enumerate testable patterns 31/31