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Objective of Today’s Lecture
• Learn a fundamental mechanism of machine learning

– Machine learning is a core process in many applications in data mining
• Computational aspects of machine learning are mainly discussed
• Key issues:

– Computing (single) vs Learning (double)◦ Finite/infinite
– Learning targets (mathematical objects) vs
Representations (programs)
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Learning from Examples (Generalization)
[Schoelkopf, 2013]

• 1, 2, 4, 7, ... →What are succeeding numbers?
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Learning from Examples (Generalization)
[Schoelkopf, 2013]

• 1, 2, 4, 7, ... →What are succeeding numbers?
1, 2, 4, 7, 11, 16, ... (!" = !"−1 + " − 1)
1, 2, 4, 7, 12, 20, ... (!" = !"−1 + !"−2 + 1)
1, 2, 4, 7, 13, 24, ... (!" = !"−1 + !"−2 + !"−3)
1, 2, 4, 7, 14, 28 (divisors of 28)
1, 2, 4, 7, 1, 1, 5, ... (# = 3.1415… and $ = 2.718… )

• More than 1229 rules! (https://oeis.org)
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Analyze Learning as Scientific Problem
• Which is the correct answer (or generalization)
for succeeding numbers of 1, 2, 4, 7,… ?
– Any answer is possible!
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Analyze Learning as Scientific Problem
• Which is the correct answer (or generalization)
for succeeding numbers of 1, 2, 4, 7,… ?
– Any answer is possible!

• We should take two points into consideration:
(i) We need to formalize the problem of “learning”◦ There are two agents (teacher and learner) in learning,

which are different from “computation”
(ii) Learning is an infinite process◦ A learner usually never knows that

the current hypothesis is perfectly correct
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Framework of Learning (ML vs DM)

User
(Teacher) (Learner)
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Machine Learning
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generalizes
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Computation — Core Engine of Learning/Mining

• Machine learning/data mining is usually achieved using a
computer

• Computing behavior is mathematically formulated by
Alan Turing in 1936
– A. M. Turing, On Computable Numbers, with the Application to the

Entscheidungsproblem, Proceedings of the London Mathematical Society, 42(1),
230–265, 1937

• The model of computation, known as a Turing machine,
is developed for simulating computation by human beings
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Turing Machine

Tape

MachineState

• The machine repeats the following:
– Read a symbol ! of a cell
– Do the following from the symbol ! and the current state %
according to a set of rules in its memory◦ Replace the symbol ! at the square◦ Move the head◦ Change the state % 11/34



Computing vs Learning
• In computation, the process is completed on its own

– No interaction◦ The Turing machine automatically works
according to programmed rules

– A finite process

12/34



Computing vs Learning
• In computation, the process is completed on its own

– No interaction◦ The Turing machine automatically works
according to programmed rules

– A finite process
• In learning, there are two agents (teacher and learner)

– Interaction between agents should be considered◦ A learning protocol between a teacher and a learner
is essentially needed

– An infinite process
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Formalize Learning in Computational
Manner
1. What are targets of learning?
2. How to represent targets and hypotheses?
3. How are data provided to a learner?
4. How does the learner work?
5. When can we say that the learner correctly learns the target?
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Learning of Binary Classifier
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Learning of Binary Classifier

wx + b = 0
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Example: Perceptron (by F. Rosenblatt, 1958)

• Learning target: two subsets &,' ⊆ ℝ) s.t. & ∩ ' = ∅
– Assumption: & and ' are linearly separable◦ There exists a function (classifier) *∗(+) = ,∗+ + - s.t.*∗(+) > 0 ∀+ ∈ &, *∗(+) < 0 ∀+ ∈ '
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Example: Perceptron (by F. Rosenblatt, 1958)

• Learning target: two subsets &,' ⊆ ℝ) s.t. & ∩ ' = ∅
– Assumption: & and ' are linearly separable◦ There exists a function (classifier) *∗(+) = ,∗+ + - s.t.*∗(+) > 0 ∀+ ∈ &, *∗(+) < 0 ∀+ ∈ '

• Hypotheses: hyperplanes on ℝ)
– If we consider a linear equation *(+) = ,+ + -, each line can be
uniquely specified by a pair of two parameters (,, -) (hypothesis)

• Data: a sequence of pairs (+1, .1), (+2, .2),…
– (+/ , ./): (a real-valued vector in ℝ), a label)
– +/ ∈ & ∪ ', ./ ∈ {1,−1}, and ./ = 1 (./ = −1) if +/ ∈ & (+/ ∈ ')
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Learning Model for Perceptron

F
G A hypothesis, a hyperplane

in general, is uniquely speci!ed
by a pair (w, b) 

(xi, 1)
(xj, –1) Data

f(x) = wx + b = 0
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Learning Procedure of Perceptron
1. , ← 0, - ← 0 (or a small random value) // initialization
2. for / = 1, 2, 3,… do
3. Receive /-th pair (+/ , ./)
4. Compute ! =∑)0=1,0+0/ + -
5. if ./ ⋅ ! < 0 then // +/ is misclassified
6. , ← , + ./+/ // update the weight
7. - ← - + ./ // update the bias
8. end if
9. end for
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Correctness of Perceptron
• It is guaranteed that a perceptron always converges
to a correct classifier
– A correct classifier is a function * s.t.*(+) > 0 ∀+ ∈ &,*(+) < 0 ∀+ ∈ '
– The convergence theorem

• Note: there are (infinitely) many functions
that correctly classify & and '
– A perceptron converges to one of them
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Summary: Perceptron

Target Two disjoint subsets of ℝ)
Representation Two parameters (,, -) of linear

equation *(+) = ,+ + -
Data Real vectors from target subsets

Algorithm Perceptron

Correctness Convergence theorem
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Example 2: Maximum Likelihood Estimation
• Estimate the probability of a coin being a head in a toss

Target Bernoulli distribution

Representation Parameter (probability) 1
Data Sampling

Algorithm Maximum Likelihood Estimation1̂ = 3∕"
Correctness Consistency
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Basic Definitions of Learning
• Target: a classifier *∗ ∶ 4 → {0, 1}

– A class ! of classifiers is usually pre-determined
– Each target can be viewed as the set &∗ = {! ∈ 4 ∣ *∗(!) = 1}◦ &∗ is called a concept
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Basic Definitions of Learning
• Target: a classifier *∗ ∶ 4 → {0, 1}

– A class ! of classifiers is usually pre-determined
– Each target can be viewed as the set &∗ = {! ∈ 4 ∣ *∗(!) = 1}◦ &∗ is called a concept

• Hypothesis space: ℛ
– Each hypothesis 5 ∈ ℛ represents a classifier
– ℛ ⊆ Σ∗ usually holds (Σ∗ is the set of finite strings)

• Data: Example (!,*∗(!))
– ! ∈ 4
– An example (!, 1) is called positive, (!, 0) is called negative
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Learning Model

X

A class of
classi!ers

A target classi!er
(concept) f*

Hypothesis

(x1, 0), (x2, 1),
(x3, 1), (x4, 0), ...

Learner

Data
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Learning Model (e.g. Perceptron)

ℝd

A class of
linearly
separable sets

A target of linear
equation f*

Perceptron(w, b)

Data
(x1, 0), (x2, 1),
(x3, 1), (x4, 0), ...

(in f(x) = wx + b)
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Gold’s Learning Model
(Identification in the Limit)
• Gold gave the first basic learning model, called
“Identification in the limit”
– E. M. Gold, Language identification in the limit,

Information and Control, 10(5), 447–474, 1967

• This model was originally introduced to analyze
the learnability of formal languages
– His motivation was to model infant’s learning process of natural
languages
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Formal Languages
• Alphabet Σ: a nonempty finite set

– Each element ! ∈ Σ is called a symbol
• Word , = !1!2 … !": a finite sequence of symbols

– Null word 6, whose length is 0
• The set of words Σ∗ (with 6) and Σ+ (without 6)Σ∗ = { !1!2 … !" ∣ !/ ∈ Σ," ≥ 0 }Σ+ = { !1!2 … !" ∣ !/ ∈ Σ," ≥ 1 } = Σ∗ ⧵ {6}
• Formal language: a subset of Σ∗
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Representation of Languages
• We connect syntax and semantics using a mapping *
• For a hypothesis 5 ∈ ℛ, *(5,,) is 0 or 1 for , ∈ Σ∗

– 5 is a program of a classifier
– , is a (binary) code of the input to 5

• 7(5) = {, ∈ Σ∗ ∣ *(5,,) = 1 }
• ℛ is usually a recursively enumerable set

– There is an algorithm that enumerates all elements of ℛ
– ℛ is often identified with ℕ◦ Each natural number encodes a classifier (hypothesis)
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Setting of Gold’s Learning Model
• A class of languages ! ⊆ {8 ∣ 8 ⊆ Σ∗ } is chosen
• For a language 7 ∈ !, an infinite sequence 9 = (+1, .1), (+2, .2),…
is a complete presentation of 7 if
(i) {+1,+2,… } = Σ∗
(ii) ./ = 1 ⇐⇒ +/ ∈ 7 for all /
– 9[/] = (+1, .1),… , (+/ , ./) (a prefix of 9)

• A learner is a procedure: that receives 9 and
generates an infinite sequence of hypotheses ; = 51,52,…
– : outputs 5/ if it gets 9[/]
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Identification in the Limit
• If ; converges to some hypothesis 5 and 5 represents 7,
we say that: identifies 7 in the limit

• If: identifies any 7 ∈ ! in the limit,
we say that: identifies ! in the limit
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Basic Strategy: Generate and Test
• Input: a complete presentation 9 of a language 7
• Output: ; = 51,52,…
1. / ← 1, < ← ∅
2. Repeat
3. < ← < ∪ {(+/ , ./)}
4. 3 ← min { 0 ∈ ℕ ∣ 7(5(0)) consistent with < }
5. // 5(0) is a hypothesis encoded by a natural number 0
6. 5/ ← 5(3) and output 5/
7. / ← / + 1
8. until forever
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Power of Generate and Test Strategy
• For any class ! of languages,
Generate and Test strategy identifies ! in the limit
– That is, Generate and Test strategy identifies
every language 7 ∈ ! in the limit

• Unfortunately, this strategy is very inefficient
– More intelligent strategy can be designed
for each learning target

– One of the most important tasks in studies of
machine learning!
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Learning from Positive Data
• In many cases, in particular in data mining,
we obtain only positive data
– Imagine supervised vs unsupervised learning

• A positive presentation of a language 7 ∈ !
is an infinite sequence +1,+2,… s.t. 7 = {+1,+2,… }

• If ; (an infinite sequence of hypotheses of a learner:) converges
to a hypothesis 5 s.t. 7(5) = 7,
we say that: identifies 7 in the limit from positive data

32/34



Limitation of Learning from Positive Data
• Consider the following class !

(i) All finite languages are included in !
(ii) At least one infinite language is included in !
– ! is called superfinite

• Gold proved that a superfinite class cannot be learned
from positive data
– e.g. Σ = {!}, ! contains all finite languages and {!" ∣ " ≥ 1}

• Although this fact shows a limitation, there still exist rich classes of
interesting languages
– For example, pattern language
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References
• If you are interested in computational learning theory, the
following books might be interesting:
– 嚖⾱䏿俑,埆啾顜,㼭卌耆,鎘皾锷涸㷕统,㛅괏긫, 2001
– S. Jain, D. N. Osherson, J. S. Royer, A. Sharma, Systems That Learn, A
Bradford Book, 1999

• These books are not necessarily for this lecture
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