
December 3, 2021

Clustering
Data Mining 07 (データマイニング)

Mahito Sugiyama (杉山麿人)



Today’s Outline
• Clustering methods will be introduced
• 𝐾-means, EM algorithm, DBSCAN, hierarchical clustering
• Evaluation of clustering results
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Clustering
• Goal: Partition objects into several groups, where

those in the same group are similar with each other
– A typical problem in unsupervised learning

• Given a dataset 𝐷 = {𝒙1,𝒙2,… ,𝒙𝑛}, 𝒙𝑖 ∈ ℝ𝑑

• Clustering: Find a partition 𝒞 = {𝐶1, 𝐶2,… , 𝐶𝐾} of 𝐷 s.t.
⋃

𝑖∈{1,2,…,𝐾}
𝐶𝑖 = 𝐷 and 𝐶𝑖 ∩ 𝐶𝑗 = ∅

– Each 𝐶𝑖 ⊆ 𝐷 is called a cluster
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K-means
• 𝐾-means is one of the most heavily used algorithm
• The sum of squared errors scoring function:

SSE(𝒞) =
𝐾∑

𝑘=1

∑

𝒙∈𝐶𝑘

‖𝒙 − 𝝁𝑘‖
2 =

𝐾∑

𝑘=1

∑

𝒙∈𝐶𝑘

𝑑∑

𝑗=1
(𝑥𝑗 − 𝜇𝑗𝑘)

2

– 𝝁𝑘 is the mean vector of a cluster 𝐶𝑘
– Dissimilarity is measured by the squared Euclidean distance

• 𝐾-means tries to find the optimal clustering 𝒞∗ s.t.
𝒞∗ = argmin

𝒞
SSE(𝒞)
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Pseudocode of K-means
• Input: Dataset 𝐷, Number of clusters 𝐾
• Output: Clustering 𝒞
1. Randomly initialize 𝐾 centroids: 𝝁1,𝝁2,… ,𝝁𝐾
2. repeat
3. 𝐶𝑘 ← ∅ for all 𝑘 ∈ {1, 2,… , 𝐾}
4. for each 𝒙 ∈ 𝐷 do // cluster assignment
5. 𝑘∗ ← argmin𝑘∈{1,2,…,𝐾} ‖𝒙 − 𝝁𝑘‖

2

6. 𝐶𝑘∗ ← 𝐶𝑘∗ ∪ {𝒙}
7. for each 𝑘 ∈ {1, 2,… , 𝐾} do // centroid update
8. 𝝁𝑘 ← (1∕|𝐶𝑘|)

∑
𝒙∈𝐶𝑘

𝒙
9. until cluster assignment does not change
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K-means on 1-Dimensional Data
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Initial dataset

1st iteration

2nd iteration

0 10 20 30
μ1 = 2 μ2 = 4

0 10 20 30
μ1 = 2.5 μ2 = 16
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K-means on 1-Dimensional Data

4th iteration

0 10 20 30
μ1 = 4.75 μ2 = 19.6

3rd iteration
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5th iteration (converged)

0 10 20 30
μ1 = 7 μ2 = 25

6/32



Notes on K-means
• 𝐾-means is a classic algorithm (proposed in 1967!),
while is still the state-of-the-art
– It is fast; its time complexity is 𝑂(𝑛𝑑𝐾)
– Easy to use; there is only one parameter 𝐾

• Drawbacks
– Its result may be a local optimum, not global
– Its result depends on initialization
– It cannot detect non-spherical clusters
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K-means++
• 𝐾-means++ is an algorithm for selecting initial clustering

– This can alleviate the problem of finding worse clustering than optimal
1. Randomly select a data point 𝒙 ∈ 𝐷 and 𝝁1 ← 𝒙
2. for each 𝑘 = {2, 3,… , 𝐾} do
3. for each 𝒙 ∈ 𝐷 do 𝐷(𝒙)← min𝑖∈{1,2,…,𝑘−1} ‖𝒙 − 𝝁𝑖‖

2

4. for each 𝒙 ∈ 𝐷 do 𝑝(𝒙)← 𝐷(𝒙)∕
∑

𝒔∈𝐷 𝐷(𝒔)
5. Select 𝝁𝑘 from 𝐷 using the probability distribution 𝑝(𝒙) for each 𝒙 ∈ 𝐷
6. Perform 𝐾-means using 𝜇1, 𝜇2,… , 𝜇𝐾 as the initial cluster centers
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EM Clustering
• In 𝐾-means, each point either belongs to a cluster or not
→ hard clustering

• How about obtaining the probability of cluster membership?
→ soft clustering

• The EM (Expectation-Maximization) clustering with a mixture of
Gaussian distributions is the representative method
– It is sometimes called soft 𝐾-means
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The General EM Algorithm (1/2)
• Input: A joint distribution 𝑝(𝑋,𝑌; 𝜃) over observed variables 𝑋

and hidden (latent) variables 𝑌, with parameters 𝜃
Goal: Maximize the likelihood of 𝑝(𝑋; 𝜃)

• This is difficult as the marginal distribution

log𝑝(𝑋; 𝜃) = log (
∑

𝑌
𝑝(𝑋,𝑌; 𝜃))

should be optimized
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The General EM Algorithm (2/2)
• Input: A joint distribution 𝑝(𝑋,𝑌; 𝜃) over observed variables 𝑋

and hidden (latent) variables 𝑌, with parameters 𝜃
Goal: Maximize the likelihood of 𝑝(𝑋; 𝜃) (may be local optimum)

1. Set an initial parameter 𝜃(𝑡) with 𝑡 = 0
2. Expectation step (E-step): Evaluate 𝑝(𝑌 ∣ 𝑋; 𝜃(𝑡))
3. Maximization step (M-step): Evaluate 𝜃(𝑡+1) such that

𝜃(𝑡+1) = argmax𝜃(𝑡+1)𝑄(𝜃(𝑡+1), 𝜃(𝑡))
– 𝑄(𝜃(𝑡+1), 𝜃(𝑡)) =

∑
𝑌 𝑝(𝑌 ∣ 𝑋; 𝜃(𝑡)) log𝑝(𝑋,𝑌; 𝜃(𝑡+1))

4. 𝜃(𝑡+1) ← 𝜃(𝑡), 𝑡 ← 𝑡 + 1 and repeat until convergence
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Multivariate Normal Distribution
• Probability density function of 1D normal distribution

𝑓(𝑥;𝜇, 𝜎2) = 1
√
2𝜋𝜎

exp (−
(𝑥 − 𝜇)2

2𝜎2 )

– 𝜇 ∈ ℝ: mean, 𝜎2 ∈ 𝑅: variance
• Probability density function of multivariate normal distribution

𝑓(𝒙;𝝁,Σ) = 1
(2𝜋)𝑛∕2|Σ|1∕2

exp (−
(𝒙 − 𝝁)TΣ−1(𝒙 − 𝝁)

2 )

– 𝝁 ∈ ℝ𝑛: the cluster mean vector
– Σ ∈ ℝ𝑛×𝑛: the covariance matrix
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Gaussian Mixture Model
• The Gaussian mixture model over 𝐾 clusters:
𝑓(𝒙) =

∑𝐾

𝑘=1
𝑓(𝒙 ∣ 𝝁𝑘,Σ𝑘)𝑃(𝐶𝑘)

– 𝑃(𝐶𝑘) is the mixture parameter satisfying∑𝐾
𝑘=1 𝑃(𝐶𝑖) = 1,

corresponding to the latent variable
• We denote the set of all parameters by 𝜽 such that
𝜽 =

{
𝝁1,Σ1, 𝑃(𝐶1),𝝁2,Σ2, 𝑃(𝐶2),… ,𝝁𝐾 ,Σ𝐾 , 𝑃(𝐶𝐾)

}

• Given a dataset 𝐷, the objective is to maximize the log-likelihood:
max
𝜽

𝐿𝐷(𝜽) = max
𝜽

∑𝑛

𝑖=1
log𝑓(𝒙𝑖)
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EM Clustering
• Given the current 𝜽, the E-step:

𝑤𝑖𝑘 = 𝑃(𝐶𝑘 ∣ 𝒙𝑖) =
𝑃(𝐶𝑘 and 𝒙𝑖)

𝑃(𝒙𝑖)
=
𝑓(𝒙𝑖;𝝁𝑘,Σ𝑘)𝑃(𝐶𝑘)

𝑓(𝒙𝑖)
for each data point 𝒙𝑖 and each cluster 𝐶𝑘

• The M-step:

𝝁𝑘 =
∑𝑛

𝑖=1𝑤𝑖𝑘𝒙𝑖
∑𝑛

𝑖=1𝑤𝑖𝑘
, Σ𝑘 =

∑𝑛
𝑖=1𝑤𝑖𝑘‖𝒙𝑖 − 𝝁𝑘‖

2

∑𝑛
𝑖=1𝑤𝑖𝑘

, 𝑃(𝐶𝑘) =
∑𝑛

𝑖=1𝑤𝑖𝑘

𝑛
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Clusters that K-means cannot find
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DBSCAN
• DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
is a density-based clustering algorithm

• 𝜀-neighborhood: A ball of radius 𝜀 around a point 𝒙 ∈ ℝ𝑑,
𝑁𝜀(𝒙) = 𝐵(𝒙, 𝜀) = {𝒚 ∈ 𝐷 ∣ dist(𝒙,𝒚) ≤ 𝜀 }
– 𝒙 is a core point if |𝑁𝜀(𝒙)| ≥ MinPts
– 𝒙 is directly density reachable from 𝒚 if 𝒙 ∈ 𝑁𝜀(𝒚)

• 𝒙 is density reachable from 𝒚 if there is a chain of points
𝒙1,𝒙2,… ,𝒙𝑙 s.t. 𝒙1 = 𝒚, 𝒙𝑙 = 𝒙, and 𝒙𝑖+1 is directly density
reachable from 𝒙𝑖
– 𝒙 and 𝒚 are in the same cluster if 𝒚 is density reachable from 𝒙
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Cluster Construction in DBSCAN

MinPts = 3
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Cluster Construction in DBSCAN

MinPts = 3ε
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Cluster Construction in DBSCAN

MinPts = 3ε
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Pseudocode of DBSCAN (1/2)
1. 𝐷core ← ∅; 𝑘 ← 0
2. for each 𝒙 ∈ 𝐷 do // find core points
3. if |𝑁𝜀(𝒙)| ≥ MinPts then 𝐷core ← 𝐷core ∪ {𝒙}

4. for each 𝒙 ∈ 𝐷core do
5. 𝑘 ← 𝑘 + 1; DensityConnected(𝑥, 𝑘)
6. 𝒞← {𝐶1,… , 𝐶𝑘}, where 𝐶𝑖 ← {𝒙 ∈ 𝐷 ∣ id(𝒙) = 𝑖 }

7. 𝐷Noise ← {𝒙 ∈ 𝐷 ∣ id(𝒙) is not assigned }
8. return 𝒞, 𝐷Noise 18/32



Pseudocode of DBSCAN (2/2)
DensityConnected(𝒙, 𝑘)
1. for each 𝒚 ∈ 𝑁𝜀(𝒙) do
2. id(𝑦)← 𝑘

3. if 𝒚 ∈ 𝐷core then DensityConnected(𝒚, 𝑘)
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DBSCAN with 𝜀 = 14 and MinPts = 10
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DBSCAN with 𝜀 = 12 and MinPts = 10
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DBSCAN with 𝜀 = 16 and MinPts = 10
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Notes on DBSCAN
• DBSCAN can find clusters of arbitrary shapes

– The number 𝐾 of clusters is not needed
• Drawbacks

– One has to appropriately set 𝜀 and MinPts,
which are often difficult

– Runtime is slower than 𝐾-means,
the time complexity is 𝑂(𝑛2𝑑) (v.s. 𝑂(𝑛𝑑𝑘) in 𝐾-means)
◦ We can speed-up using an index tree (e.g. 𝑘-𝑑 tree),

but it is not efficient for high-dimensional data
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Hierarchical Clustering
• Hierarchical clustering makes a hierarchy of clusters

– We can find clusters in a cluster
• Two approaches: divisive (top-down) and agglomerative
(bottom-up)
– Divisive: Start from the largest one cluster of the entire dataset and
recursively divide clusters

– Agglomerative: Start from the smallest clusters of single data points
and recursively join similar clusters
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Agglomerative Hierarchical Clustering
1. 𝒞← {𝐶𝑖 = {𝒙𝑖} ∣ 𝒙𝑖 ∈ 𝐷}

2. repeat
3. (𝑖, 𝑗)← argmin𝑖,𝑗 dist(𝐶𝑖 , 𝐶𝑗)

4. 𝐶𝑖𝑗 ← 𝐶𝑖 ∪ 𝐶𝑗
5. 𝒞← (𝒞 ⧵ {𝐶𝑖 , 𝐶𝑗}) ∪ {𝐶𝑖𝑗}

6. until |𝐶| = 1
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Distance between Clusters
• There are a number of choices how to measure the distance
between clusters

• Single link: 𝛿(𝐶𝑖 , 𝐶𝑗) = min{dist(𝒙,𝒚) ∣ 𝒙 ∈ 𝐶𝑖 ,𝒚 ∈ 𝐶𝑗}
• Complete link: 𝛿(𝐶𝑖 , 𝐶𝑗) = max{dist(𝒙,𝒚) ∣ 𝒙 ∈ 𝐶𝑖 ,𝒚 ∈ 𝐶𝑗}

• Group average: 𝛿(𝐶𝑖 , 𝐶𝑗) =
∑

𝒙∈𝐶𝑖

∑
𝒚∈𝐶𝑗

dist(𝒙,𝒚)∕|𝐶𝑖||𝐶𝑗|
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Dendrogram

0.3 0.4 0.5 0.6 0.7 0.8 0.9

12 4 53 6 7 8 910

27/32



Dendrogram (agglomerative, complete)
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Evaluation of Clusters
• How to evaluate the goodness of clusters?
• Internal and external criteria

– Internal: Evaluate clusters without ground truth labels
– External: Evaluate clusters using ground truth labels
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Internal Criteria
• Just use SSE(𝒞) in 𝐾-means or log-likelihood in EM
• Silhouette index: for 𝒙𝑖 ∈ 𝐶𝑗 ,

𝑠(𝑖) = 1
𝑛

𝑁∑

𝑖=1

𝑏(𝑖) − 𝑎(𝑖)
max{𝑎(𝑖), 𝑏(𝑖)}

,

𝑎(𝑖) = 1
|𝐶𝑗| − 1

∑

𝒚∈𝐶𝑗 , 𝒚≠𝒙
‖𝒚 − 𝒙𝑖‖2, 𝑏(𝑖) = min

𝑘∈{1,…,𝐾},𝑘≠𝑗

1
|𝐶𝑘|

∑

𝒚∈𝐶𝑘

‖𝒚 − 𝒙𝒊‖2

– −1 ≤ 𝑠(𝑖) ≤ 1, higher is better
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External Criteria
• Accuracy is not appropriate!
• Variation of Information: For two partitions 𝒞 = {𝐶1,… , 𝐶𝐾} and
𝒯 = {𝑇1,… , 𝑇𝑀} of 𝐷 with |𝐷| = 𝑛,

VI(𝒞,𝒯) = −
∑

𝑖,𝑗
𝑟𝑖𝑗 (log

𝑟𝑖𝑗
|𝐶𝑖|∕𝑛

+ log
𝑟𝑖𝑗

|𝑇𝑗|∕𝑛
)

𝑟𝑖𝑗 =
|𝐶𝑖 ∩ 𝑇𝑗|

𝑛
– 0 ≤ VI(𝒞,𝒯) ≤ min{log𝑛, 2 log(max 𝐾,𝑀)}, 0 being the best

• Adjusted Rand index is also often used
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Dendrogram Purity
• The standard external criterion to evaluate hierarchical clusters
• Given a dataset 𝐷, its hierarchical clustersℋ, and a ground-truth
partition 𝒞 = {𝐶1,… , 𝐶𝐾}
– LCA(𝒙𝑖 ,𝒙𝑗): the smallest cluster inℋ that includes both 𝒙𝑖 and 𝒙𝑗
– pur(𝐹;𝐺) = |𝐹 ∪ 𝐺|∕|𝐹| for a pair of clusters 𝐹,𝐺 ∈ 𝐷
– Let 𝑃 = {(𝒙𝑖 ,𝒙𝑗) ∣ 𝒙𝑖 ,𝒙𝑗 ∈ 𝐶𝑘}

• Dendrogram purity ofℋ is

DP(ℋ) = 1
|𝑃|

𝐾∑

𝑘=1

∑

𝒙𝑖 ,𝒙𝑗

pur(LCA(𝒙𝑖 ,𝒙𝑗);𝐶𝑘)

31/32



Summary
• Popular clustering methods are introduced

– 𝐾-means
– EM algorithm
– DBSCAN
– Hierarchical clustering

• Clustering results can be evaluated internally or externally
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