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Today’s Outline

* Clustering methods will be introduced
* K-means, EM algorithm, DBSCAN, hierarchical clustering
* Evaluation of clustering results
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Clustering

 Goal: Partition objects into several groups, where
those in the same group are similar with each other

- Atypical problem in
- Given a dataset D = {x1,x,,...,x,}, x; € R¢
. : Find a partition € = {C{,C,, ...,Cr} of D s.t.

U Cl':DandCian:ﬂ
ie{1,2,...K}

- EachC, C Discalled a
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K-means

. is one of the most heavily used algorithm
* The scoring function'
SSE(C) = Z 2 I = s ll® = D3 7 (x) = )2
k=1 xeCy k=1xeCy j=1

- M, is the mean vector of a cluster C,
- Dissimilarity is measured by the squared Euclidean distance

« K-means tries to find the optimal clustering ¢* s.t.
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Pseudocode of K-means

* Input: Dataset D, Number of clusters K

 Output: Clustering €
Randomly initialize K centroids: u ,m,, ..., iy

1.
2. repeat

3 C, < @forallk €{1,2,...,K}

4. foreachx e Ddo //cluster assignment

>. k" argminke{l,z ..... K} 1 _'ukHZ

6 Ci» < Cpx U {x}

7. foreachk e{1,2,..,K}do //centroid update
8. M (/ICD T, X

9. until cluster assignment does not change
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K-means on 1-Dimensional Data

Initial dataset
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K-means on 1-Dimensional Data

3rd iteration
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Notes on K-means

* K-means is a classic algorithm (proposed in 1967!),
while is still the state-of-the-art

- Itis fast; its time complexity is O(ndK)
- Easy to use; there is only one parameter K
* Drawbacks

- Its result may be a local optimum, not global
- Its result depends on initialization
- It cannot detect
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K-means++

« K-means++ is an algorithm for selecting initial clustering

- This can alleviate the problem of finding worse clustering than optimal
1. Randomly select a data pointx e Dand u, « x
2. foreachk =1{2,3,..,K}do
3. foreachx e DdoD(x) < min,cq, _ull*—ml
4.  foreach x € D do p(x) < D(x)/ >, _, D(s)
5. Select u, from D using the probability distribution p(x) for each x € D
6. Perform K-means using u,, 4,, ..., 4x as the initial cluster centers
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EM Clustering

 In K-means, each point either belongs to a cluster or not
_)

* How about obtaining the probability of cluster membership?
_)

* The with a mixture of
Gaussian distributions is the representative method

- Itis sometimes called
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The General EM Algorithm (1/2)

 Input: A joint distribution p(X,Y;0) over observed variables X
and hidden (latent) variables Y, with parameters 6
Goal: Maximize the likelihood of p(X;6)

* This is difficult as the marginal distribution

log p(X;0) = log (Z pX,Y; 6))
Y

should be optimized
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The General EM Algorithm (2/2)

Input: A joint distribution p(X,Y;6) over observed variables X
and hidden (latent) variables Y, with parameters 6
Goal: Maximize the likelihood of p(X;0) (may be local optimum)

. Set an initial parameter 6 witht = 0

Expectation step (E-step): Evaluate p(Y | X;0W)

. Maximization step (M-step): Evaluate 8¢*+1 such that

61 +D) = argmax .., Q8 +Y, 61)
- QEV,60) = ¥, p(Y | X;60)log p(X, Y;0¢*Y)

QU gt ¢t + 1 and repeat until convergence
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Multivariate Normal Distribution

* Probability density function of 1D normal distribution

flesu,0%) = L exp (—(x — /«t)2>

2
27O 20
- u € R: mean, o* € R: variance

* Probability density function of multivariate normal distribution

, _ 1 =)' - p
T D) = e eXp( 2 )

- u € R"™: the cluster mean vector
- X € R™"; the covariance matrix
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Gaussian Mixture Model

* The Gaussian mixture model over K clusters:
fx) = Z FOe | e ZOP(C)

- P(Cy)is the satisfying ZI;; P(C) =1,
corresponding to the latent variable

« We denote the set of all parameters by 6 such that
6 = {,Lll, ZlaP(Cl)a ﬂza ZZ’P(CZ)’ ’:u'K’ ZKaP(CK)}
* Given a dataset D, the objective is to maximize the log-likelihood:

n
max Lp(0) = max Zi:l log f(x;)
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EM Clustering

¢ Given the current 6, the
P(Cy and x;) (x5 sy, Zi)P(Cyo)

wir = P(Cy | x;) =

P(x;) J(x;)
for each data point x; and each cluster Cy,
* The
n n n
Zi=1 Wik Xi Zi=1 Wik [|2%; — I~‘k||2 Zi=1 Wik
ﬂk = n ’ Zk = n ’ P(Ck) —
Zi=1 Wik Zi=1 Wik
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Clusters that K-means cannot find
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Clusters that K-means cannot find
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DBSCAN

« DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
is a density-based clustering algorithm

. : A ball of radius € around a point x € R¢,
N(x) = B(x,e) ={y € D | dist(x, y) < ¢}
- xisa if IN.(x)| > MinPts
- xis fromyifx € N.(y)
* XIS from y if there is a chain of points

X1,X,,...,X; S.t. x; =y, x; = x, and x;, is directly density
reachable from x;

- x and y are in the same cluster if y is density reachable from x
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Cluster Construction in DBSCAN

MinPts =3

O
O O O
O 5 0
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Cluster Construction in DBSCAN

MinPts =3

17/32



Cluster Construction in DBSCAN

MinPts =3
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Cluster Construction in DBSCAN
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Cluster Construction in DBSCAN
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Pseudocode of DBSCAN (1/2)

1. Deore < 01k < 0O

2. foreachx € Ddo //find core points

3. if |[N(x)| > MinPts then Dyre < Dcore U {X}
4. for each x € D, do

5. k < k+1; DensityConnected(x, k)

6. C « {Cq,...,Ci},WwhereC; « {xeD|id(x) =i}
7. Dnoise < {x € D | id(x) is not assigned }

8
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Pseudocode of DBSCAN (2/2)

DensityConnected(x, k)
1. foreach y € N.(x) do

2. id(y) <k
3. if y € Dcore then DensityConnected(y, k)
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DBSCAN with ¢ = 14 and MinPts = 10
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DBSCAN with ¢ = 12 and MinPts = 10
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DBSCAN with ¢ = 16 and MinPts = 10
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Notes on DBSCAN

« DBSCAN can find clusters of
- The number K of clusters is not needed

* Drawbacks

- One has to appropriately set ¢ and MinPts,
which are often difficult
- Runtime is slower than K-means,
the time complexity is O(n*d)  (v.s. O(ndk) in K-means)

o We can speed-up using an (e.qg. k-d tree),
but it is not efficient for high-dimensional data
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Hierarchical Clustering

. makes a hierarchy of clusters
- We can find clusters in a cluster
» Two approaches: (top-down) and

(bottom-up)

- Divisive: Start from the largest one cluster of the entire dataset and
recursively divide clusters

- Agglomerative: Start from the smallest clusters of single data points
and recursively join similar clusters
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Agglomerative Hierarchical Clustering

1. ¢« {C;={x;} | x; € D}

2. repeat

3. (i,j) « argmini’j dist(C;, C})
4. C;j < CiUC;

5. C <« (C\{C,C;Hu{Cit

6. until |C] =1
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Distance between Clusters

* There are a number of choices how to measure the distance
between clusters

* Single link: 6(C;, C;) = min{dist(x,y) | x € C;,y € C}}
* Complete link: 6(C;,C;) = max{dist(x,y) | x € C;,y € C}}
» Group average: 6(C;,C;) = erc Zyec dist(x, y)/|C;||C|]
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Dendrogram
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Dendrogram (agglomerative, complete)
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Evaluation of Clusters

« How to evaluate the goodness of clusters?

» Internal and external criteria

- Internal: Evaluate clusters without ground truth labels
- External: Evaluate clusters using ground truth labels
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Internal Criteria

* Just use SSE(@) in K-means or log-likelihood in EM

* Silhouette index: for x; € Cj,
N

N b(i) — a(i)
S(l) ) Z max{a(i), b(i)}’

i=1

aiy=—— Y y-xlh b= min — 3 |y-x]

1C;| =1 yelyix kel,...Khk#j |Crl yel,

J
- —1 < s(i) <1, higher is better
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External Criteria

 Accuracy is not appropriate!

. For two partitions € = {Cy, ..., Cx} and
J ={T,,..., Ty} of Dwith |D| = n,

rij rl'j
VI(C,T7)=— ) r;;i|log + log
lZ]: U( ICil/n |Tj|/”)

(el
rij:

n
- 0 < VI(G,T) < min{logn, 2log(max K, M)}, 0 being the best

» Adjusted Rand index is also often used
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Dendrogram Purity

* The standard external criterion to evaluate hierarchical clusters

» Given a dataset D, its hierarchical clusters #¢, and a ground-truth
partition € = {Cy, ..., Cg}

- LCA(x;, x;): the smallest cluster in J¢ that includes both x; and x;
- pur(F;G) = |[F UG|/|F| for a pair of clusters F,G € D
- LetP = {(xl,x]) | xiaxj S Ck}

: of H is
s

K
i > > pur(LCA(x;, x); Cy)

k=1 Xi,X j

DP(7() =
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Summary

* Popular clustering methods are introduced

- K-means

- EM algorithm

- DBSCAN

- Hierarchical clustering

* Clustering results can be evaluated internally or externally
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