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Today’s Outline

» Today's topic is
- Find relevant from datasets

« Feature selection detects variables, or features, that are associated
with the target variable from the set of all variables in a given
dataset

- The target variable can be (0 and 1 for cases and controls)
in a case-control study or
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Variable Ranking (Filter Method)

1. Measure the degree of association between the target variable
and each variable by some scoring method

- Pearson’s correlation coefficient
- Mutual information

2. Rank variables using the score
* The above two-step procedure is called the
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Pearson’s Correlation Coefficient

* (Pearson’s) correlation coefficient p measures the
between two variables

- The larger the absolute value |p] is, the stronger the association is
- p > 0 means the positive correlation, p < 0 the negative correlation

* o between two random variables X and Y is defined as
E|(X - E[X])(Y — E[Y])]

X JE[x - Ex)2| E[ (v - Elv))?]
- oOyy iSthe , Oy IS the

- E[X] is the expectation
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Sample Correlation Coefficient

* Given a dataset (sample) D = {(xy,¥1), (x5, ¥3), ..., (XN» YN)}
the ris computed as

_ Z]iil(xi - x)(yi —y)
- N N ,
\/Zi l(xl' _ )?)2 Zi 1(yi _ ﬂZ

— 1 - 1
x@ yﬁz
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Properties of Correlation Coefficient

« -1 <p<1Tand1, —1 are the strongest correlation
* X and Y are independent= p(x) =0
- X and Y are (statistically) independent if
P(XUY)=PX)P(Y)
and denoted by X 1 Y
* However, [p(x) = 0= X and Y are independent] does not hold
- p(x) can be 0 for nonlinear association
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Mutual Information

* For a pair of discrete random variables X and Y, the

is defined as
p(x,y)
Y) = )1
I(X,Y) x%;(yép(x y) Og<p(x)p(Y))

- p(x,y): joint probability, p(x) and p(y): marginal probability
* Properties:
- IX,Y)>0
- IX,Y)=HX)+H(Y)-HX,Y)=HX) - H(Y | X)
o H(X)is the entropy: — >, _. p(x)log p(x)

o H(X,Y)is the jointentropy: — 3 _ > _ p(x,y)log p(x,y) 6/



Properties of Mutual Information

* Pros:

- The mutual information can measure both linear and nonlinear
associations

o X andY areindependent < I(X,Y) =0

* Cons:

- Additional is needed to estimate the mutual information
for continuous variables

- Not normalized in the original form, but can be normalized by
I(X,Y)

VHG)H(Y)

I*(X,Y) =
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Computing the p-value

. shows the probability of getting the dataset with assuming
that there is no association between variables

- Often used in science, e.g. biology
. can be used to compute the p-value

(i) Compute the association score s of the given dataset
(ii) Repeat the following h times and get h scores s, s,, ..., S:

a. Fix x and permute indices of y
b. Compute the score using the permuted indices

(iii) The p-value=[{i e [h]|s; > s}/ h
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Manhattan Plot for Visualization
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Properties of Filter Method

* Pros:

- Easy to use
- Easy to understand

« Cons:

- Redundant features might be selected as interactions between
variables are not considered

o If a dataset contains exactly the same variables that have the
strong association with the target variable, both variables are
selected
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Wrapper Method

* A repeats to construct a classifier for each subset
of variables

(i) Given a dataset with n variables X', X?,...,X" and a target variable Y
(i) Repeat the following for every subset I C [n]

a. Construct a subset of the dataset using only variablesin I
b. Apply classification and measure the goodness (e.g. MSE)

(i) Choose the best subset
* It is computationally too expensive if n is large
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Embedded Method

* Variables are automatically selected during the process of learning
a prediction model from a dataset

* The representative method: the

- It learns a linear prediction model, where a set of variables, which
receive nonzero coefficients, is automatically selected in the learning
process by reqularizing the number of variables

- The joint additive effect of selected variables maximizes the prediction
accuracy of the model
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The Lasso

* The is the following optimization problem

1< 2
mmNZ(yi —<w,xi>—wO) S.t. ||lD||1 <t
U

- Jlwll, = X7_, lw/| (¢,-norm)

- Minimizing squared error loss with the constraint

- The solution typically has many of the w’/ equal to zero
- {j € [n] | w’ # 0}, called the , Is considered to be the set of
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The Lasso

* More convenient Lagrange form of the Lasso;
1 < 2
min N Z(%‘ —(w, x;) — wo) + Af|lwl|;

w,Wo 2 i—1

« If we center the dataset beforehand, it can be written as

N
1 2
1 . ] - , ] +A ’
min 5 2, (v = Gw.x) +Alwll
. 1 2
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Lasso Constraint
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Regularization Path (N = 1000, n = 100)

Number of nonzero variables
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MSE (N = 1000, n = 100)

Mean—Squared Error
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Fitting of the Lasso

» Solution of the Lasso problem satisfies the subgradient condition:
—%(xj,y—Xﬁ)) + s/ =0, j=1,2,..,n

- x/ = (x{,xé,...,xlj;,) e RN
- 5; =sign(’) ifw #0ands; € [-1,1]if w/ =0
« Thus we have

r —% |(xj,y—va)| =2, ifw/ #0,

—% |(xj,y—Xw)| <A, ifw/ =0,

* W is a piecewise-linear function w.r.t. 4 —»
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Algorithm 1: Least Angle Regression

1 LAR(X, y)
Standardize X (mean zero, unit €2 norm)
ro=y—-y w, < (0,0,..,0)
Find x/ which has the largest correlation |{(x/, ry)|
lo — (U/Nx,ro)|; A < {j} X4 « X withonly A = {j}
foreach k € {1,2,...,K = min{N — 1, n}} do
L LAREACH(X, Yy, A, )Lk—ll Vi_1, wk_l)

N OO i AW N
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Algorithm 2: Least Angle Regression
1 LAREACH(X, Yy A, A’k—ll Vi_q, wk_l)
§ — (/)X X)X ry
A« (0,0,..,0);, Ay <&
W()t) < W(k-1) + (/‘tk—l — /‘L)A forO0< A < /‘Lk—l
r(d) « y—Xwd) =r_ — (A1 —A)X40
Decrease 4 and find ¢ & A that first achieves
(1/N)x7,r(A))| = 4
7 | A< AU{l] wy < B(Ar); rp <y —Xwg

S A W N
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Dimension Reduction

also reduces the number of variables

» Variables are not directly selected but transformed into principal
variables

. (t-distributed stochastic neighbor embedding) is recently
becoming a popular method and often used to visualize a
multi-dimensional dataset (van der Maaten and Hinton, 2008)

- This can be used for
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t-SNE

* Given a dataset D = {x;, x;, ..., Xy}, define p;; for each i, j € [N] as

exp (—||x; — xj||2/20i2)

2
D iesi XD (=[x — X [|2/207)
- o, is the variance of the Gaussian
- Py =0
- We also use p;; = (p;;; + p;;)/2N

* Goal: Find low-dimensional y,, y,, ..., y, of the original
X1,X,,..., XNy With keeping the proxy between points

Djii =
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How to Set Variance

* Given the as a parameter, which is defined as
Perp(P;) = 2H®)
for a distribution P; and its entropy H(P;) such that

H(P;) = —iju log pji
J

* For eachi € [N], find O'l.z that satisfies the given perplexity
* In practice, the perplexity from 5 to 50 is recommended
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t-SNE Formulation

* For low-dimensional y;,, Y; of x;, X
5 —1
(1+ 1y, — ;11

= —1
Zk 217&]{ (1 + |y, — yl”z)
* The cost C is the KL divergence: C = Dk (P,Q) = )., Zj pijlog ?
ij

dij

* t-SNE finds low-dimensional y,, y,, ..., ¥y that minimizes the cost C
- The can be used for optimization

-1
oc — 4Z(pij - q;)¥, —y;) (1 +ly; - yj||2>
J

oy,
Y 24/25



Summary

« Feature selection can find relevant variables (features)
- Filter method, wrapper method, embedded method

» The Lasso is the representative embedded method
* t-SNE is the representative dimension reduction method
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