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Today’s Outline
• Pattern mining

– Partial order structure +monotonicity
– The Apriori principle to avoid combinatorial explosion

• Compression of patterns
– Maximal, closed, ZDD

• Formal concept analysis
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Market Basket Analysis
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Binary Representation
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Itemset Lattice
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Find Frequently Copurchased Itemsets
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Problem Definition of Pattern Mining
• 𝑆: the set of patterns, each 𝑥 ∈ 𝑆: pattern
• A dataset is a multiset 𝐷 ⊆ 𝑆 with a multiplicity function 1𝐷 ∶ 𝑆 → ℕ

– 1𝐷(𝑥) is the number of 𝑥 in 𝐷
– |𝐷| =

∑
𝑥∈𝑆 1𝐷(𝑥)

• Let 𝜉 ∶ 𝑆 → ℝ be a function measuring the importance of a pattern
𝑥
– Assume that 𝜉(𝑥) can be computed from a dataset 𝐷

• The pattern mining problem:
Given a threshold 𝜎, enumerate the set 𝐹 = {𝑥 ∈ 𝑆 ∣ 𝜉(𝑥) ≥ 𝜎}
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How About Generate-And-Test?
• Let the set of items 𝑉 = {1, 2,… , 𝑛}

• 𝑆 = 2𝑉 in itemset mining, each pattern 𝑥 ⊆ 𝑉 is called an itemset
• Generate-and-test strategy:

(i) Pick up an itemset 𝑥 ⊆ 𝑉
(ii) Compute its importance 𝜉(𝑥)
(iii) Output 𝑥 if 𝜉(𝑥) ≥ 𝜎
(iv) Repeat the above for all itemsets
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Combinatorial Explosion!!

𝑛 = |𝑉| # Patterns Approximate time required

10 210 0.00000057 sec.
20 220 0.00059 sec.
30 230 0.6 sec.
40 240 10.2 min.
50 250 174 hours.
70 270 7 million days
100 2100 8 thousand billion days
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Partial Order Structures
• Let us assume that 𝑆 is a poset (partially ordered set) (𝑆,⪯)
• “⪯” is a partial order if

(i) 𝑥 ⪯ 𝑥 (reflexivity)
(ii) 𝑥 ⪯ 𝑦, 𝑦 ⪯ 𝑥 ⇒ 𝑥 = 𝑦 (antisymmetry)
(iii) 𝑥 ⪯ 𝑦, 𝑦 ⪯ 𝑧 ⇒ 𝑥 ⪯ 𝑧 (transitivity)

• If 𝑥 ⪯ 𝑦, a pattern 𝑦 is more precise and 𝑥 is more general
– Deriving 𝑦 from 𝑥 is refinement, 𝑥 from 𝑦 is generalization
– The upper set ↑𝑥 = {𝑠 ∈ 𝑆 ∣ 𝑠 ⪰ 𝑥}

• In itemset mining 𝑥 ⊆ 𝑦 ⇐⇒ 𝑥 ⪯ 𝑦

6/26



Various Posets (Partially Ordered Sets)
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Order Between Syntax And Semantics
• To use the partial order structure of (𝑆,⪯),
𝜉 should be order homomorphism, i.e., 𝑥 ⪯ 𝑦 ⇒ 𝜉(𝑥) ≤ 𝜉(𝑦)

• The structure “⪯” in the syntax world and
that of “≤” in the semantics world matches→ efficient search!

• In reality, we need patterns with high values of 𝜉, so we require
𝑥 ⪯ 𝑦 ⇒ 𝜉(𝑥) ≥ 𝜉(𝑦) (e.g. 𝜉′(𝑥) = 1∕𝜉(𝑥))
– 𝜉 is anti-monotonic with respect to ⪯
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Frequency
• The most popular 𝜉 is the frequency 𝜂 define as

𝜂(𝑥) = 1
|𝐷|

∑

𝑠⪰𝑥
1𝐷(𝑠)

– In addition, 𝜂′(𝑥) = |𝐷|𝜂(𝑥) is called the support
– 𝜂 (and 𝜂′) is always anti-monotonic

• A pattern 𝑥 ∈ 𝑆 is called a frequent pattern if 𝜂(𝑥) ≥ 𝜎
• The supporting set of 𝑥 is 𝐷 ∩ ↑𝑥

– 𝜂′(𝑥) = |𝐷 ∩ ↑𝑥|
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Frequent Patterns

A B C D

AB

ABC ABD ACD BCD

AC AD BC BD CD

ABCD

A B C D

AB

ABC ABD ACD BCD

AC AD BC BD CD

ABCD

{}

0 0 0 0

0

ID 1:
A B C D

ID 2:
ID 3:
ID 4:
ID 5:
ID 6:
ID 7:
ID 8:

1 1 0 1
1 0 1 0
1 0 0 0
0 0 1 1
1 1 0 1
1 0 0 0
1 0 0 1
1 1 1 1

Transaction database
(Binary vectors) Freq ≥ 3/8

10/26



Anti-Monotonicity of Frequency
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Prefix-Based Search Tree
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Apriori Principle
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Apriori Principle
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The Apriori Algorithm

Apriori algorithm
PatternMining(𝜎)

PatternEnumeration(⊥, 𝜎)
PatternEnumeration(𝑥, 𝜎)

for each 𝑠 ⋗ 𝑥
if 𝜉(𝑠) ≥ 𝜎

Output 𝑠
PatternEnumeration(𝑠, 𝜎)

• 𝑥 ⋖ 𝑠 ⇐⇒ (𝑥 ≺ 𝑠 and 𝑥 ⪯ 𝑦 ≺ 𝑠) ⇒ 𝑥 = 𝑦
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VLDB 1994
(KDD started in 1995)
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Association Rules
• An association rule is 𝑥 → 𝑦, where 𝑥, 𝑦 ∈ 𝑆 and 𝑥 ∩ 𝑦 = ∅
• The confidence of 𝑥 → 𝑦 is the conditional probability of the
occurrence of 𝑥 ∪ 𝑦 given 𝑥, i.e.,

conf(𝑥 → 𝑦) =
𝜂(𝑥 ∪ 𝑦)
𝜂(𝑥)

– A rule is strong if the confidence is larger than a threshold
– In market basket analysis, which item will be bought if 𝑥 is bought

• Association rule finding is a post processing of FPM
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Implementations and Datasets
• The fastest implementation is LCM (by Uno sensei at NII)

– http://research.nii.ac.jp/~uno/code/lcm.html
– It won the FIMI04 competition

• Other algorithms: FP-growth, Eclat
• FIMI data repository

– A famous repository of benchmark dataset for itemset mining
– http://fimi.ua.ac.be/data/
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Compressing Patterns
• Too many patterns will be generated

– Many of them are redundant
• How to compress/summarize patterns?
1. Maximal patterns

– All frequent patterns can be recovered but their frequencies are lost
2. Closed patterns

– All frequent patterns with their frequencies can be recovered
3. ZDD (Zero-suppressed binary Decision Diagram)
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Maximal Patterns (no superset is frequent)
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Maximal Patterns (no superset is frequent)
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Closed Patterns (no superset with the same freq.)
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Closed Patterns (no superset with the same freq.)
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Abst rac t  - Dlscoveri 
e&ient algorithms have Y 

sssociatlon rules is one of the most important task in data mining. Many 
ssn proposed in the literature. The most noticeable are Apriori, Mannila’s 

algorithm, Partition, Sampling and DIC, that are all based on the Apriori mining method: pruning 
the subset lattice (items& lattice). In this paper we propose an efficient algorithm, called Close, based 
on a new mining method: pruning the closed set lattice (closed itemset lattice). This lattice, which is 
a sub-order of the s&ret lattice, is closely reIated to WilIe’s concept lattice in formal concept anaIysls. 
Experiments comparing Cl- to au optimlsed version of Apriorl showed that Close is very e&lent 
for mining dense. and/or correlated data such as census style data, and performs reasonably well for 
marlret~atyledata~1999Eteavierseien~Ltd.Allrightstpaerved 

Key wovdzx Data Mining, Knowlsdge Diiry, Association Rules, Data Clustering, Lattices, A@ 
ri6hms 

1. INTRODUCTION 

One of the most important task in data mining is the discovery of associcrtion rules first in- 
troduced in [l]. The aim of association rule discovery is to identify relationships between items 
in very large databases. For example, given a market basket database, it wouId be interesting for 
decision support to know the fact that 80% of customers who bought cereals and sugar also bought 
milk. In a census database, we should discover that 60% of persons who worked last year earned 
leas than the average income, or in a medical database, that 70% of patients who are stiff and have 
fever also have headaches. 

Agrawal’s statement of the problem of discovering association rules in market basket databases 
is the following [l, 21. Let Z = {ir,ia, . . . , im) be a set of m literals called items. Let the database 
v = {tr,ts,..., t,,} be a set of n transactions, each one consisting of a set of items I from Z and 
associated with a unique identifier called its TID. I is called a k-itemset, where k is the size of I. 
A transaction t E 2) is said to contain an itemset I if I E t. The support of an itemset I is the 
percentage of transactions in ‘D containing I: support(l) = Il(t E ‘27 1 I C t}ll / Il{t E D)ll. An 
association rule is a conditional implication among itemsets, 11 =S fg, where itemsets 1r,& c  Z and 
II n la = 8. The confidence. of an association rule r : II + I2 is the conditional probability that a 
transaction contains 12, given that it contains 4: confidence(r) = suppurt(l~ Ul9) / suppwt(I~). 
The support of an association rule is defined as: support(r) = support(l~ U 19) 

The problem of mining association rules in a database V is then traditionally de&red as fol- 
lows. Given user defined thresholds for the permissible minimum support and confidence, find all 
asso&tion rules that hold with more than the given minsupport and minconfidence. Thii problem 
can be broken into two sub-problems [l]: 

1. Find all frequent itemsets in ‘D, i.e. itemsets with support greater or equal to minsupport. 
Frequent itemsets are also called Zurge itemsets. 

2. For each fresuent itemset 11 Eound, generate all association rules 1s =S Ir -12 I  12 c  11, with 
confidence greater or equal to minconfidence. 

Qzeamnmend& by hlipt? Cal-in0 Jr. 
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Represent Combinations by ZDD

A B C
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C C C C

B B
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0 10 0
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{B, AC}

10

21/26



Two Reduction Rules of ZDD
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Jump

0

X

Reduction rule 2
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Compress Frequent Patterns by ZDD
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LCM over ZBDDs: Fast Generation of
Very Large-Scale Frequent Itemsets

Using a Compact Graph-Based Representation

Shin-ichi Minato1, Takeaki Uno2, and Hiroki Arimura1

1 Graduate School of Information Science and Technology,
Hokkaido University, Sapporo, 060-0814 Japan

{minato,arim}@ist.hokudai.ac.jp
2 National Institute of Informatics, Tokyo 101–8430, Japan

uno@nii.ac.jp

Abstract. Frequent itemset mining is one of the fundamental tech-
niques for data mining and knowledge discovery. In the last decade, a
number of efficient algorithms have been presented for frequent itemset
mining, but most of them focused on only enumerating the itemsets that
satisfy the given conditions, and how to store and index the mining result
in order to ensure an efficient data analysis is a different matter.

In this paper, we propose a fast algorithm for generating very large-
scale all/closed/maximal frequent itemsets using Zero-suppressed BDDs
(ZBDDs), a compact graph-based data structure. Our method, “LCM
over ZBDDs,” is based on one of the most efficient state-of-the-art algo-
rithms proposed thus far. Not only does it enumerate/list the itemsets,
but it also generates a compact output data structure on the main mem-
ory. The result can be efficiently postprocessed by using algebraic ZBDD
operations. The original LCM is known as an output linear time algo-
rithm, but our new method requires a sub-linear time for the number of
frequent patterns when the ZBDD-based data compression works well.
Our method will greatly accelerate the data mining process and this will
leads to a new style of on-memory processing for dealing with knowledge
discovery problems.

1 Introduction

Considerable attention in the last decade has been placed on discovering useful
information from large-scale databases. Frequent itemset mining is one of the
fundamental data mining problems. Since the pioneering paper by Agrawal et
al. [1] various algorithms have been proposed to solve the frequent pattern min-
ing problem (cf., e.g., [3,5,16]. Among those state-of-the-art algorithms, Linear
time Closed itemset Miner (LCM) [15,13,14] by Uno et al. has a feature of the
theoretical bound as output linear time. Their open source code [12] is known
as one of the fastest implementations of a frequent itemset mining program.

LCM and most of the other itemset mining algorithms focus on only enu-
merating or listing the itemsets that satisfy the given conditions, and how to

T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 234–246, 2008.
c⃝ Springer-Verlag Berlin Heidelberg 2008

PAKDD 2008
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Formal Concept Analysis
• Formal concept analysis builds a concept hierarchy

– A concept coincides with a closed pattern in pattern mining
• A context is a triple (𝐺,𝑀, 𝐼)

– 𝐺,𝑀: a set of objects and attributes, 𝐼 ⊆ 𝐺 ×𝑀: a binary relation
– 𝐺 corresponds to the set of individuals,𝑀 the set of items

• For subsets 𝐴 ⊆ 𝐺 and 𝐵 ⊆ 𝑀, define the mapping ′ as
𝐴′ = {𝑚 ∈ 𝑀 ∣ (𝑔,𝑚) ∈ 𝐼 for all 𝑔 ∈ 𝐴}
𝐵′ = {𝑔 ∈ 𝐺 ∣ (𝑔,𝑚) ∈ 𝐼 for all𝑚 ∈ 𝐵}
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Concept Lattice And Closure Operator
• A pair (𝐴, 𝐵) is called a concept if 𝐴′ = 𝐵 and 𝐴 = 𝐵′

– (𝐴, 𝐵) is a concept ⇐⇒ 𝐵 is a closed pattern
• The set of all concepts is called a concept lattice
• The operator ′ is a Galois connection between 2𝐺 and 2𝑀

– 𝐴′ ⊆ 𝐵 ⇐⇒ 𝐴 ⊆ 𝐵′

• The mapping ′′ is a closure operator on (𝐺,𝑀, 𝐼)
– A subset 𝐴 ⊆ 𝐺 is a concept ⇐⇒ 𝐴′′ = 𝐴
– To efficiently find closed patterns, one needs to jump from a closed
pattern to a next closed pattern using the closure operator
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