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Today’s Outline

* A primer of graphs
- Subgraph isomorphism
* Graph mining
- How to find (sub)graphs from graph databases?

- Reuvisiting the Apriori principle to avoid combinatorial explosion
- The canonical DFS code for graph representation
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Graph Mining: Overview

(

4 Y4 )
- AN J
4 Y4 )
- AN J

-

~

\_
-~

~

J
~

\_

J

2/17



Graph Mining: Overview

~

\\\\\

-------

2/17



Graph Mining: Overview
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Graphs

* An (unlabeled) graph G = (V,E)
- V:avertexset, ECV x V: an edge set
- For (u,v) € E, u,v are ,visa of u

o (u,v)and (v,u) are identified if the graph is undirected
- N(v) ={u € V| (v,u) € E}, the set of all neighbors
* Alabeled graph G = (V,E, ¢)
- ¢ : VUE — Z, where X is the set of vertex and edge labels
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Subgraph Isomorphism

* Agraph G’ = (V',E')is a of G = (V,E), denoted by
G' C G,
ifvV cvandE Cc (V! xV)NE

« Agraph G’ is to G if there exists a bijective function

7 . V' — V such that
(i) (u,v) e E' < (n(u),7(v)) € E
(i) Yo e V7, ¢(v) = ¢(7(v))
(iii) Y(u,v) € E’, ¢(u,v) = ¢p(xr(u), 7(v))
* If 7 is injective but not surjective: G \ range(x) # @,
G'is to G, denoted by G' C G

- Testing whether G’ C G is (computationally heavy!) 417



Subgraph Isomorphism
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Subgraph Isomorphism
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Subgraph Mining

* In graph mining,
* S: the set of graphs (can be infinite), a dataset D is a multiset of S
- D s a collection of graphs: D = {G,,G,, ...,G,}

* The n(G) of a graph G is obtained as
{G; € D | G C G;}| 1

* Frequent subgraph mining problem:
Given a threshold o, enumerate the set F = {G € S | n(G) > ¢}
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Two Problems in Graph Mining

1. of the search space

- More massive than itemset mining
- The number of subgraphs with m vertices: 0(2™")

- O(m?) possible edges
- The number of subgraphs with m vertices and s labels: O(s™")

- When we obtain a subgraph G’, computing n(G") is heavy as
we need to repeat subgraph isomorphism checking for every G, € D

« Solution: Use the and the
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Graph Mining Algorithms

* The first algorithm that achieves graph mining is

- Inokuchi, A. and Washio, T. and Motoda, H., An Apriori-Based

Algorithm for Mining Frequent Substructures from Graph Data,
PKDD 2000

« The standard method is

- Yan, X. and Han, J., gSpan: Graph-based substructure pattern
mining, ICDM 2002

* The state-of-the-art is

- Nijssen, S. and Kok, J. N., A Quickstart in Frequent Structure Mining
Can Make a Difference, SIGKDD 2004
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DFS Code (1/3)

* The represents a graph G as a sequence of tuples
based on depth first search (DFS)

- There can be multiple DFS codes for a single graph

 Perform DFS traversal on a graph G and index each vertex
according to the order of discovery in the DFS

- Edgesincluded in the DFS are
other edges are

* Each edge (i, j) is represented as a tuple (i, j, ¢(i), $(j), ¢(i, j))
- i < jifitis aforward edge andi > j if backward

I
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DFS Code (2/3)

* Introduce the (total) order “<;"” between two tuples
t1 = (i1, j1, $(i1), $(J1), p(in, j1)) and tp = (ip, j2, $(i2), $(j2), (02, j2))
* First, define the order <, between e, = (iy, j1) and e; = (iy, j):
1 <p €
- If both e; and e, are forward edges, (a) j; < j, or (b) j; = j, and i; > i,
- If both e, and e, are backward edges, (a) i; < i, or (b)i; =i, and j; < j,
- If e; and e, are forward and backward edges, j; < i,
- Ife; and e, are backward and forward edges, i; < j,

* Introduce some total order <; into triples of labels

(1), pCi1), #(iv, j1))
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DFS Code (3/3)

* t1 = (i1, j1, (1), (1), pCin, j1))
* ty = (ip, j2, P(iz), §(j2), p(iz, j2))
* I <l &=

(l) (i1’j’l) <e (iZst)r or
(ii) iy, j1) = (iz, j2) and (p(iy), ¢(j1), ¢(y, j1)) < (@@2), ¢(j2), iz, j2))

« The DFS code of a graph is a sequence of tuples sorted according
to the order “<,”
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Canonical DFS Code

* Finally, introduce the order < between two DFS codes
t=(t1,tp ., ty)andt’ =, t),....t))
c t <t < (i)or (ii)
() 3ks.t. 0 <k <min(m,n), t, =t], t,=t;, .., Ly =t,_, b <L,
(i) m<nandt =t t,=t), .., t, =ty
* The of a graph G is the smallest DFS code of G
according to the order “<”
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Canonical DFS Code
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Rightmost Path Extension

* During the DFS traversal on a graph G, the is the
path from the root to the rightmost leaf (leaf with the largest index)

- achieves systematic candidate graph
generation from an existing graph G by either

(i) adding a backward edge from the to other vertex on
the rightmost path, or

(ii) adding a forward edge from a vertex on the rightmost path
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The gSpan Algorithm

Algorithm 1: Algorithm gSpan

// C < @ for the initial call

GSPAN(C, D, o)

E «— RIGHTMOSTPATHEXTENSION(C, D)

foreach (t,n,) € £ do

C <« Cuit}

n(C) < n,

if n(C) > o and 1SCANONICAL(C) then
| GSPAN(C, D, o)
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Subprocesses in gSpan

* RightmostPathExtension(C, D)

- Receive a graph G represented by its DFS code C and a dataset D
- Return all possible rightmost path extensions of G

o A set of pairs of tuples and frequencies
¢ = {(t’l ’ 771,‘1 )’ (tZ’ 77t2), L) (tm’ ntm)}
* jsCanonical(C)

- Receive a DFS code C
- Return TRUE if C is canonical and FALSE otherwise
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Conclusion

* gSpan achieves graph mining
* The keys are:

- Canonical DFS codes
- Rightmost path extension
- Combine them with the Apriori principle
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