
November 10, 2023

Graph Mining
Data Mining 03 (データマイニング)

Mahito Sugiyama (杉山麿人)

Today’s Outline
• A primer of graphs

– Subgraph isomorphism
• Graph mining

– How to find (sub)graphs from graph databases?
– Revisiting the Apriori principle to avoid combinatorial explosion
– The canonical DFS code for graph representation

1/17

Graph Mining: Overview

2/17

Graph Mining: Overview

2/17

Graph Mining: Overview

Subgraph

Support: 4

Support: 2

2/17

Graphs
• An (unlabeled) graph 𝐺 = (𝑉, 𝐸)

– 𝑉: a vertex set, 𝐸 ⊆ 𝑉 × 𝑉: an edge set
– For (𝑢, 𝑣) ∈ 𝐸, 𝑢, 𝑣 are adjacent, 𝑣 is a neighbor of 𝑢

◦ (𝑢, 𝑣) and (𝑣, 𝑢) are identified if the graph is undirected
– 𝑁(𝑣) = {𝑢 ∈ 𝑉 ∣ (𝑣, 𝑢) ∈ 𝐸}, the set of all neighbors

• A labeled graph 𝐺 = (𝑉, 𝐸, 𝜙)
– 𝜙 ∶ 𝑉 ∪ 𝐸 → Σ, where Σ is the set of vertex and edge labels

3/17

Subgraph Isomorphism
• A graph 𝐺′ = (𝑉′, 𝐸′) is a subgraph of 𝐺 = (𝑉, 𝐸), denoted by
𝐺′ ⊑ 𝐺,
if 𝑉′ ⊆ 𝑉 and 𝐸′ ⊆ (𝑉′ × 𝑉′) ∩ 𝐸

• A graph 𝐺′ is isomorphic to 𝐺 if there exists a bijective function
𝜋 ∶ 𝑉′ → 𝑉 such that
(i) (𝑢, 𝑣) ∈ 𝐸′ ⇐⇒ (𝜋(𝑢), 𝜋(𝑣)) ∈ 𝐸
(ii) ∀𝑣 ∈ 𝑉′, 𝜙(𝑣) = 𝜙(𝜋(𝑣))
(iii) ∀(𝑢, 𝑣) ∈ 𝐸′, 𝜙(𝑢, 𝑣) = 𝜙(𝜋(𝑢), 𝜋(𝑣))

• If 𝜋 is injective but not surjective: 𝐺 ⧵ range(𝜋) ≠ ∅,
𝐺′ is subgraph isomorphic to 𝐺, denoted by 𝐺′ ⊑ 𝐺
– Testing whether 𝐺′ ⊑ 𝐺 is NP-complete (computationally heavy!)

4/17

Subgraph Isomorphism

5/17

Subgraph Isomorphism

Isomorphism Subgraph isomorphismsSubgraph isomorphisms

5/17

Subgraph Mining
• In graph mining, pattern ⇐⇒ (sub)graph
• 𝑆: the set of graphs (can be infinite), a dataset 𝐷 is a multiset of 𝑆

– 𝐷 is a collection of graphs: 𝐷 = {𝐺1, 𝐺2,… , 𝐺𝑛}

• The frequency 𝜂(𝐺) of a graph 𝐺 is obtained as

𝜂(𝐺) =
|{𝐺𝑖 ∈ 𝐷 ∣ 𝐺 ⊑ 𝐺𝑖}|

|𝐷|
= 1
|𝐷|

∑

𝐻⊒𝐺
1𝐷(𝐻)

• Frequent subgraph mining problem:
Given a threshold 𝜎, enumerate the set 𝐹 = {𝐺 ∈ 𝑆 ∣ 𝜂(𝐺) ≥ 𝜎}

6/17

Two Problems in Graph Mining
1. Combinatorial explosion of the search space

– More massive than itemset mining
– The number of subgraphs with𝑚 vertices: 𝑂(2𝑚2)

– 𝑂(𝑚2) possible edges
– The number of subgraphs with𝑚 vertices and 𝑠 labels: 𝑂(𝑠𝑚2)

2. Subgraph isomorphism checking
– When we obtain a subgraph 𝐺′, computing 𝜂(𝐺′) is heavy as
we need to repeat subgraph isomorphism checking for every 𝐺𝑖 ∈ 𝐷

• Solution: Use the Apriori principle and the (canonical) DFS code

7/17

Graph Mining Algorithms
• The first algorithm that achieves graph mining is AGM

– Inokuchi, A. and Washio, T. and Motoda, H., An Apriori-Based
Algorithm for Mining Frequent Substructures from Graph Data,
PKDD 2000

• The standard method is gSpan
– Yan, X. and Han, J., gSpan: Graph-based substructure pattern
mining, ICDM 2002

• The state-of-the-art is GASTON
– Nijssen, S. and Kok, J. N., A Quickstart in Frequent Structure Mining
Can Make a Difference, SIGKDD 2004

8/17

DFS Code (1/3)
• The DFS code represents a graph 𝐺 as a sequence of tuples
based on depth first search (DFS)
– There can be multiple DFS codes for a single graph

• Perform DFS traversal on a graph 𝐺 and index each vertex
according to the order of discovery in the DFS
– Edges included in the DFS are forward edges,
other edges are backward edges

• Each edge (𝑖, 𝑗) is represented as a tuple (𝑖, 𝑗, 𝜙(𝑖), 𝜙(𝑗), 𝜙(𝑖, 𝑗))
– 𝑖 < 𝑗 if it is a forward edge and 𝑖 > 𝑗 if backward

9/17

DFS Code (2/3)
• Introduce the (total) order “<𝑡” between two tuples
𝑡1 = (𝑖1, 𝑗1, 𝜙(𝑖1), 𝜙(𝑗1), 𝜙(𝑖1, 𝑗1)) and 𝑡2 = (𝑖2, 𝑗2, 𝜙(𝑖2), 𝜙(𝑗2), 𝜙(𝑖2, 𝑗2))

• First, define the order <𝑒 between 𝑒1 = (𝑖1, 𝑗1) and 𝑒2 = (𝑖2, 𝑗2):
𝑒1 <𝑒 𝑒2 ⇐⇒
– If both 𝑒1 and 𝑒2 are forward edges, (a) 𝑗1 < 𝑗2 or (b) 𝑗1 = 𝑗2 and 𝑖1 > 𝑖2
– If both 𝑒1 and 𝑒2 are backward edges, (a) 𝑖1 < 𝑖2 or (b) 𝑖1 = 𝑖2 and 𝑗1 < 𝑗2
– If 𝑒1 and 𝑒2 are forward and backward edges, 𝑗1 ≤ 𝑖2
– If 𝑒1 and 𝑒2 are backward and forward edges, 𝑖1 < 𝑗2

• Introduce some total order <𝑙 into triples of labels
(𝜙(𝑖1), 𝜙(𝑗1), 𝜙(𝑖1, 𝑗1))

10/17

DFS Code (3/3)
• 𝑡1 = (𝑖1, 𝑗1, 𝜙(𝑖1), 𝜙(𝑗1), 𝜙(𝑖1, 𝑗1))
• 𝑡2 = (𝑖2, 𝑗2, 𝜙(𝑖2), 𝜙(𝑗2), 𝜙(𝑖2, 𝑗2))
• 𝑡1 <𝑡 𝑡2 ⇐⇒

(i) (𝑖1, 𝑗1) <𝑒 (𝑖2, 𝑗2), or
(ii) (𝑖1, 𝑗1) = (𝑖2, 𝑗2) and (𝜙(𝑖1), 𝜙(𝑗1), 𝜙(𝑖1, 𝑗1)) <𝑙 (𝜙(𝑖2), 𝜙(𝑗2), 𝜙(𝑖2, 𝑗2))

• The DFS code of a graph is a sequence of tuples sorted according
to the order “<𝑡”

11/17

Canonical DFS Code
• Finally, introduce the order < between two DFS codes
𝒕 = (𝑡1, 𝑡2,… , 𝑡𝑚) and 𝒕′ = (𝑡′1, 𝑡

′
2,… , 𝑡

′
𝑛)

• 𝒕 < 𝒕′ ⇐⇒ (i) or (ii)
(i) ∃𝑘 s.t. 0 ≤ 𝑘 ≤ min(𝑚, 𝑛), 𝑡1= 𝑡′1, 𝑡2= 𝑡′2, … , 𝑡𝑘−1= 𝑡′𝑘−1, 𝑡𝑘 < 𝑡′𝑘
(ii) 𝑚 ≤ 𝑛 and 𝑡1= 𝑡′1, 𝑡2= 𝑡′2, … , 𝑡𝑚 = 𝑡′𝑚

• The canonical DFS code of a graph 𝐺 is the smallest DFS code of 𝐺
according to the order “<”

12/17

Canonical DFS Code

Noncanonical Canonical Noncanonical

1

2

3 4

t1 = (1, 2, ●, ●)
t2 = (2, 3, ●, ●)
t3 = (2, 4, ●, ●)
t4 = (4, 1, ●, ●)

1

2

4 3

t1 = (1, 2, ●, ●)
t2 = (2, 3, ●, ●)
t3 = (3, 1, ●, ●)
t4 = (2, 4, ●, ●)

2

1

4 3

t1 = (1, 2, ●, ●)
t2 = (2, 3, ●, ●)
t3 = (3, 1, ●, ●)
t4 = (1, 4, ●, ●)

●<t●

13/17

Rightmost Path Extension
• During the DFS traversal on a graph 𝐺, the rightmost path is the
path from the root to the rightmost leaf (leaf with the largest index)

• Rightmost path extension achieves systematic candidate graph
generation from an existing graph 𝐺 by either
(i) adding a backward edge from the rightmost vertex to other vertex on

the rightmost path, or
(ii) adding a forward edge from a vertex on the rightmost path

14/17

The gSpan Algorithm
Algorithm 1: Algorithm gSpan
// 𝐶 ← ∅ for the initial call

1 GSPAN(𝐶, 𝐷, 𝜎)
2 ℰ ← RIGHTMOSTPATHEXTENSION(𝐶, 𝐷)
3 foreach (𝑡, 𝜂𝑡) ∈ ℰ do
4 𝐶 ← 𝐶 ∪ {𝑡}
5 𝜂(𝐶)← 𝜂𝑡
6 if 𝜂(𝐶) > 𝜎 and ISCANONICAL(𝐶) then
7 GSPAN(𝐶, 𝐷, 𝜎)

15/17

Subprocesses in gSpan
• RightmostPathExtension(𝐶,𝐷)

– Receive a graph 𝐺 represented by its DFS code 𝐶 and a dataset 𝐷
– Return all possible rightmost path extensions of 𝐺

◦ A set of pairs of tuples and frequencies
ℰ = {(𝑡1, 𝜂𝑡1), (𝑡2, 𝜂𝑡2),… , (𝑡𝑚, 𝜂𝑡𝑚)}

• isCanonical(𝐶)
– Receive a DFS code 𝐶
– Return TRUE if 𝐶 is canonical and FALSE otherwise

16/17

Conclusion
• gSpan achieves graph mining
• The keys are:

– Canonical DFS codes
– Rightmost path extension
– Combine them with the Apriori principle

17/17

	Today's Outline
	Graph Mining: Overview
	Graphs
	Subgraph Isomorphism
	Subgraph Isomorphism
	Subgraph Mining
	Two Problems in Graph Mining
	Graph Mining Algorithms
	DFS Code (1/3)
	DFS Code (2/3)
	DFS Code (3/3)
	Canonical DFS Code
	Canonical DFS Code
	Rightmost Path Extension
	The gSpan Algorithm
	Subprocesses in gSpan
	Conclusion

