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Today’s Outline

* Boltzmann Machines (Ising models):
A fundamental probabilistic model of deep learning

- Gibbs distribution
- The learning equation
- Gibbs sampling
» Relationship to the deep architecture
- DBM (Deep Boltzmann Machines)
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Learning Hierarchical Distribution (1/2)
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Learning Hierarchical Distribution (2/2)

log(prob.) =-10.41 + [Bread] + [Milk] [Apple]
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Boltzmann Machines

* A (BM) is represented as an undirected graph
G=(V,E)withV ={1,2,...,n}and E C {{i, j} | i,j € V}
* The ®:{0,1}* - R of a BM G is defined as
CID(x, @) = — Z @l-xl- — Z @l-jxl-xj
eV {i,j}€E
- x=(x1,%5,...,%,) €{0,1}"
- 6=(6,,0,,...,0,,015,013, .,0,_1,) is a for

vertices (bias) 6,, ..., 6, and edges (weight) 6,5, ...,6,_1,
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Gibbs Distribution

* Probability p(x; 6) is obtained for each x € {0, 1}" as
eXp(_q)(x’ e))

p(x;0) = 2(0)
« Z(O)isa such that
@)= ), exp(~®(x;0)
xe{0,1}n

to ensure the condition er{o 1 p(x) =1

* The distribution P composed of p(x) is called
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Sample Space of BM
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Parameters 6
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Probability Computation
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Learning of BM by MLE

- Given a dataset D = {x), X2), ..., X}, the objective of learning
Boltzmann machines is to maximize the

( )

N
Find 6 that maximizes Hp(x(k); 0) = p(x(1);0) - p(x(2);0) - - - p(x(ny; €
k=1

- The probability of generating the given dataset by a BM
* The is usually used:

N N
Lp(8) = log [ | p(xk); 6) = Y log p(X(x; 6)
k=1 k=1
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Gradient of O

* The of Lp(0) w.rt. 6; and 6;; is obtained as
0L (0)
2 = {x@) € D | Xy = 1} — Nn;,
00;
0L (0)
2o = |{xu) €D | Xy = Xoj = 3 —Nn;;
69U g y _/ N——
data model
where

[ 71 = Bgl[x;] = Pr(x; = 1) = ), p(x; 0)1[x; = 1]

J
\

7ij = Eg[xix;] =Pr(x; =x; =1) = ), p(x;0)1[x; = x; = 1]
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Learning Equation of BM

* Lp(6) is maximized when the gradient is zero < For all 6;,6;;

(1
| NHx(k) €D | xqy =1} =
1
\ NHx(k) €D | xuy = Xp)j = 13 =y

- This is known as
- 7 coincides with the used in itemset mining
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Frequency 7
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Empirical Frequency

* For the P with

R 1
p(x) = NHx(k) €D | x5 = x,
define

A 1
i = NHx(k) €D | xgy =1}

A 1
nij = NHx(k) € D | X0y = Xyj = 1}

* The learning equation becomes

A

Ni =i, Nij = Nij
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KL Divergence Minimization

« Given two distributions P, Q, the

from P to Q:
Dy1(P, Q) = Z p(x) log 2.

q(x)

» Maximizing the (log)likelihood is equivalent to
minimizing the KL divergence: minpcg Dy (P, P)
- 8: the set of Gibbs distributions
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Optimization: Gradient Ascent

Algorithm 1: Learning of BM by gradient ascent
1 Initialize 6 with some values; t « 0;

2 repeat
3 foreachi € V do
4 i 8Y*) — 0 +e(h —my):;
5 foreach {i, j} € E do

(t+1) (t) A .
6 B 6, <0+ 5(771'] - 771'])'
7 [—t+1

g until 6 = g“*:
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Combinatorial Explosion

* The serious problem of learning BMs: I
* The time complexity of computation of »;:
ni= ), pxox=1]

x€{0,1}n
is O(2") and it is impossible to evaluate
- This is required to get the gradient #(x) — n(x)
* Solution: approximate it by
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Gibbs Sampling (1/2)

* A algorithm
* We can generate samples from the current Gibbs distribution

- nvariables are dependent with each other
- The partition function is not needed

* After obtaining enough sample S = {sy, s,, ..., 53} by Gibbs
sampling, n; can be approximated as

1
UiNM|{S€S|Si=1}|,

1
nl]zﬁl{seslsl=S]=1}|
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Gibbs Sampling (2/2)

* For x = (x;, x5, ..., X,,), the conditional probability of the ithe
variable being x; with fixing others is

p(xl’ e s Xj—15 Xjs Xjt 15 00 xn)

Di =
: DP(X1, e s Xi—15, 0, X415 oo 5 X)) + DX, e, Xi215 1, X1y oo » X)
_ exp(4;x;)
1+ exp(4;)’
;Li = @i + ZGUX]
JFi
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Algorithm 2: Gibbs Sampling
1 Initialize x with some values;

2 repeat

3 foreachi €{1,2,...,n}do

4 if p, > random value u € [0, 1] then

5 x; < 1

6 else

7 x; < 0

8 Output x and use it for the next initial vector

o until getting enough sample;
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Introducing Hidden Variables

* To increase the representation power of BMs,
we can introduce

* When there are hidden nodes, the (log-)likelihood is maximized

with respect to the distribution in which the hidden variables are
marginalized out

* Let V and H be visible and hidden nodes
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Outcome Space with Hidden Variable
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Restricted Boltzmann Machines (RBMs)
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Learning of RBMs

+ Given a dataset D = {v), ..., by} learning equations in RBMs are
%Z],jzl Uiy =1;  (visible, i € V)
]l\z lej:l Sig(Ay;) =n; (hidden, j € H)
]i\] 227:1 Vk)iSIG(Aky;) = 1mij,  (visible-hidden)

exp(A(x);)
T+ exp(A(y;) (k)j = ~J Zl: ij “ (k)i

Slg(/l(k)]) =
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Deep Boltzmann Machines (DBMs)
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