

Clustering

Data Mining 07 (データマイニング)

Mahito Sugiyama (杉山麿人)

Today's Outline

- Clustering methods will be introduced
- *K*-means, EM algorithm, DBSCAN, hierarchical clustering
- Evaluation of clustering results

Clustering

- Goal: Partition objects into several groups, where those in the same group are similar with each other
 - A typical problem in unsupervised learning
- Given a dataset $D = \{x_1, x_2, ..., x_n\}, x_i \in \mathbb{R}^d$
- Clustering: Find a partition $\mathcal{C} = \{C_1, C_2, ..., C_K\}$ of D s.t.

$$\bigcup_{i \in \{1,2,\dots,K\}} C_i = D \text{ and } C_i \cap C_j = \emptyset$$

- Each $C_i \subseteq D$ is called a cluster

K-means

- K-means is one of the most heavily used algorithm
- The sum of squared errors scoring function:

$$SSE(\mathcal{C}) = \sum_{k=1}^{K} \sum_{x \in C_k} ||x - \mu_k||^2 = \sum_{k=1}^{K} \sum_{x \in C_k} \sum_{j=1}^{d} (x^j - \mu_k^j)^2$$

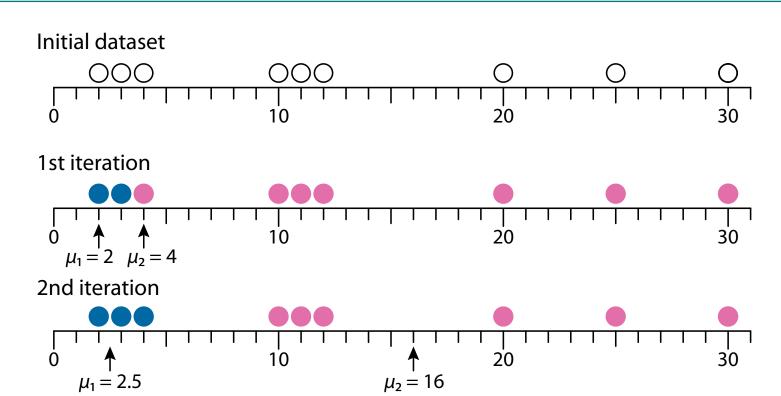
- μ_k is the mean vector of a cluster C_k
- Dissimilarity is measured by the squared Euclidean distance
- K-means tries to find the optimal clustering \mathcal{C}^* s.t.

$$\mathcal{C}^* = \underset{\mathcal{C}}{\operatorname{argmin}} \operatorname{SSE}(\mathcal{C})$$

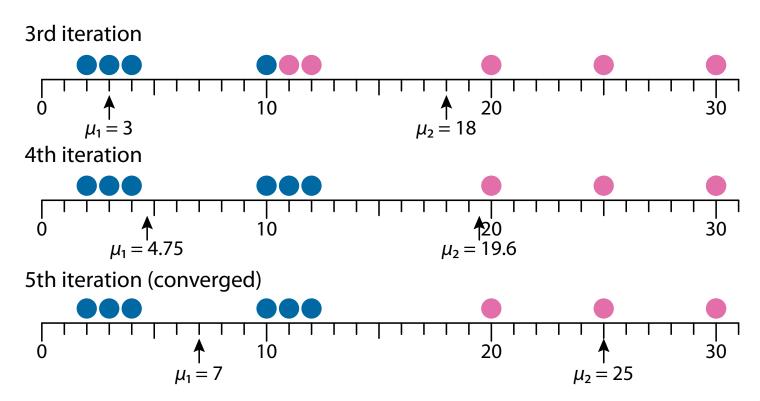
Pseudocode of *K*-means

- Input: Dataset D, Number of clusters K
- Output: Clustering ${\cal C}$
- 1. Randomly initialize K centroids: $\mu_1, \mu_2, ..., \mu_K$
- 2. repeat
- 3. $C_k \leftarrow \emptyset$ for all $k \in \{1, 2, ..., K\}$
- 4. **for each** $x \in D$ **do** // cluster assignment
- 5. $k^* \leftarrow \operatorname{argmin}_{k \in \{1, 2, \dots, K\}} ||x \mu_k||^2$
- 6. $C_{k^*} \leftarrow C_{k^*} \cup \{x\}$
- 7. **for each** $k \in \{1, 2, ..., K\}$ **do** // centroid update
- 8. $\boldsymbol{\mu}_k \leftarrow (1/|C_k|) \sum_{\boldsymbol{x} \in C_k} \boldsymbol{x}$
- 9. **until** cluster assignment does not change

K-means on 1-Dimensional Data



K-means on 1-Dimensional Data



Notes on *K*-means

- *K*-means is a classic algorithm (proposed in 1967!), while is still the state-of-the-art
 - It is fast; its time complexity is O(ndK)
 - Easy to use; there is only one parameter K
- Drawbacks
 - Its result may be a local optimum, not global
 - Its result depends on initialization
 - It cannot detect non-spherical clusters

K-means++

- K-means++ is an algorithm for selecting initial clustering
 - This can alleviate the problem of finding worse clustering than optimal
- 1. Randomly select a data point $x \in D$ and $\mu_1 \leftarrow x$
- 2. **for each** $k = \{2, 3, ..., K\}$ **do**
- 3. **for each** $x \in D$ **do** $D(x) \leftarrow \min_{i \in \{1, 2, ..., k-1\}} ||x \mu_i||^2$
- 4. for each $x \in D$ do $p(x) \leftarrow D(x) / \sum_{s \in D} D(s)$
- 5. Select μ_k from D using the probability distribution p(x) for each $x \in D$
- 6. Perform *K*-means using $\mu_1, \mu_2, ..., \mu_K$ as the initial cluster centers

EM Clustering

- In *K*-means, each point either belongs to a cluster or not
 - → hard clustering
- How about obtaining the probability of cluster membership?
 - → soft clustering
- The EM (Expectation-Maximization) clustering with a mixture of Gaussian distributions is the representative method
 - It is sometimes called soft K-means

The General EM Algorithm (1/2)

- **Input:** A joint distribution $p(X, Y; \theta)$ over observed variables X and hidden (latent) variables Y, with parameters θ **Goal:** Maximize the likelihood of $p(X; \theta)$
- This is difficult as the marginal distribution

$$\log p(X;\theta) = \log \left(\sum_{Y} p(X,Y;\theta) \right)$$

should be optimized

The General EM Algorithm (2/2)

- **Input:** A joint distribution $p(X, Y; \theta)$ over observed variables X and hidden (latent) variables Y, with parameters θ **Goal:** Maximize the likelihood of $p(X; \theta)$ (may be local optimum)
- 1. Set an initial parameter $\theta^{(t)}$ with t=0
- 2. Expectation step (E-step): Evaluate $p(Y \mid X; \theta^{(t)})$
- 3. Maximization step (M-step): Evaluate $\theta^{(t+1)}$ such that

$$\theta^{(t+1)} = \operatorname{argmax}_{\theta^{(t+1)}} Q(\theta^{(t+1)}, \theta^{(t)})$$

$$- Q(\theta^{(t+1)}, \theta^{(t)}) = \sum_{Y} p(Y \mid X; \theta^{(t)}) \log p(X, Y; \theta^{(t+1)})$$

4. $\theta^{(t+1)} \leftarrow \theta^{(t)}$, $t \leftarrow t + 1$ and repeat until convergence

Multivariate Normal Distribution

Probability density function of 1D normal distribution

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- $\mu \in \mathbb{R}$: mean, $\sigma^2 \in R$: variance
- Probability density function of multivariate normal distribution

$$f(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}{2}\right)$$

- $\mu \in \mathbb{R}^n$: the cluster mean vector
- $\Sigma \in \mathbb{R}^{n \times n}$: the covariance matrix

Gaussian Mixture Model

The Gaussian mixture model over K clusters:

$$f(\mathbf{x}) = \sum_{k=1}^{K} f(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) P(C_{k})$$

- $P(C_k)$ is the mixture parameter satisfying $\sum_{k=1}^{K} P(C_i) = 1$, corresponding to the latent variable
- We denote the set of all parameters by θ such that

$$\theta = \{ \mu_1, \Sigma_1, P(C_1), \mu_2, \Sigma_2, P(C_2), \dots, \mu_K, \Sigma_K, P(C_K) \}$$

• Given a dataset *D*, the objective is to maximize the log-likelihood:

$$\max_{\theta} L_D(\theta) = \max_{\theta} \sum_{i=1}^{n} \log f(\mathbf{x}_i)$$

EM Clustering

• Given the current θ , the E-step:

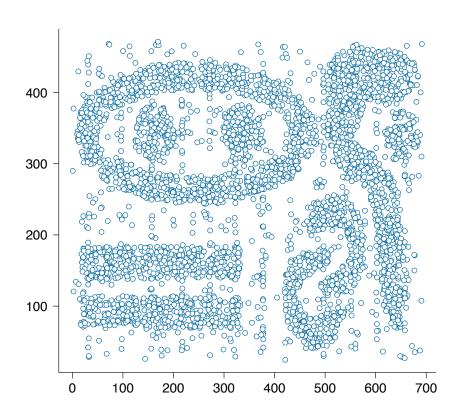
$$w_{ik} = P(C_k \mid \mathbf{x}_i) = \frac{P(C_k \text{ and } \mathbf{x}_i)}{P(\mathbf{x}_i)} = \frac{f(\mathbf{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) P(C_k)}{f(\mathbf{x}_i)}$$

for each data point x_i and each cluster C_k

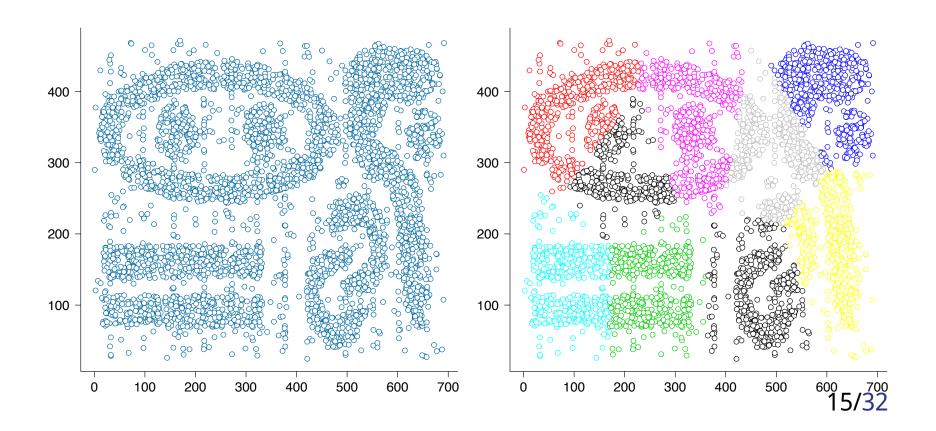
• The M-step:

$$\mu_k = \frac{\sum_{i=1}^n w_{ik} \mathbf{x}_i}{\sum_{i=1}^n w_{ik}}, \quad \Sigma_k = \frac{\sum_{i=1}^n w_{ik} || \mathbf{x}_i - \mu_k ||^2}{\sum_{i=1}^n w_{ik}}, \quad P(C_k) = \frac{\sum_{i=1}^n w_{ik}}{n}$$

Clusters that K-means cannot find



Clusters that K-means cannot find



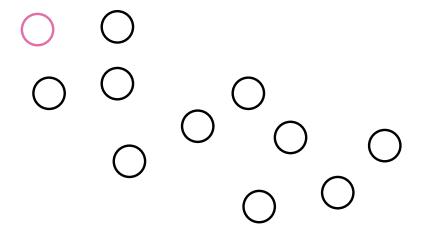
DBSCAN

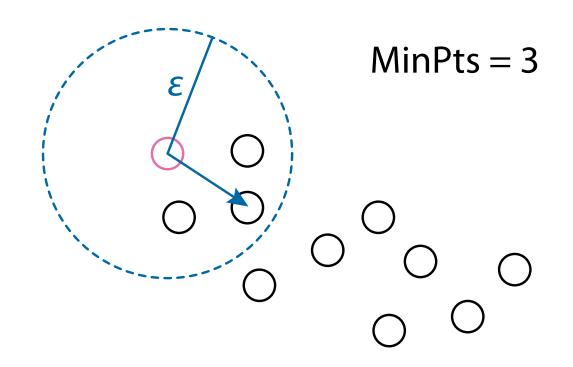
- DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-based clustering algorithm
- ε -neighborhood: A ball of radius ε around a point $x \in \mathbb{R}^d$,

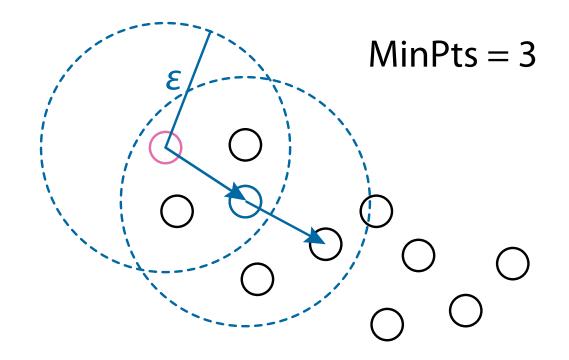
$$N_{\varepsilon}(\mathbf{x}) = B(\mathbf{x}, \varepsilon) = \{ \mathbf{y} \in D \mid \mathsf{dist}(\mathbf{x}, \mathbf{y}) \le \varepsilon \}$$

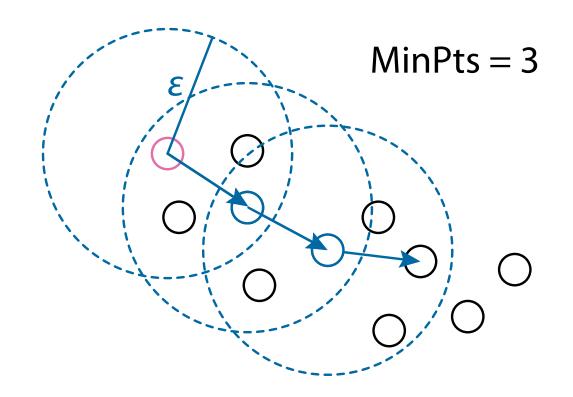
- x is a core point if $|N_{\varepsilon}(x)| \ge \text{MinPts}$
- x is directly density reachable from y if $x \in N_{\varepsilon}(y)$
- x is density reachable from y if there is a chain of points $x_1, x_2, ..., x_l$ s.t. $x_1 = y$, $x_l = x$, and x_{i+1} is directly density reachable from x_i
 - x and y are in the same cluster if y is density reachable from x

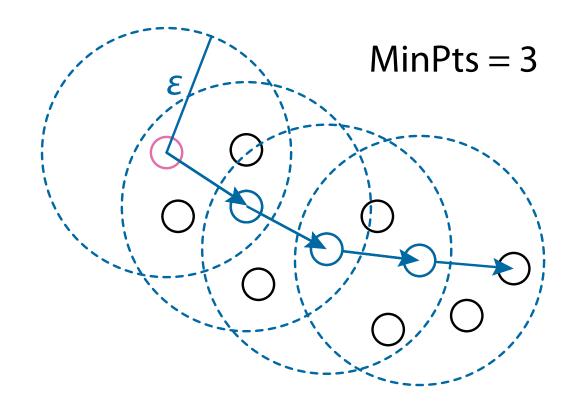
MinPts = 3











Pseudocode of DBSCAN (1/2)

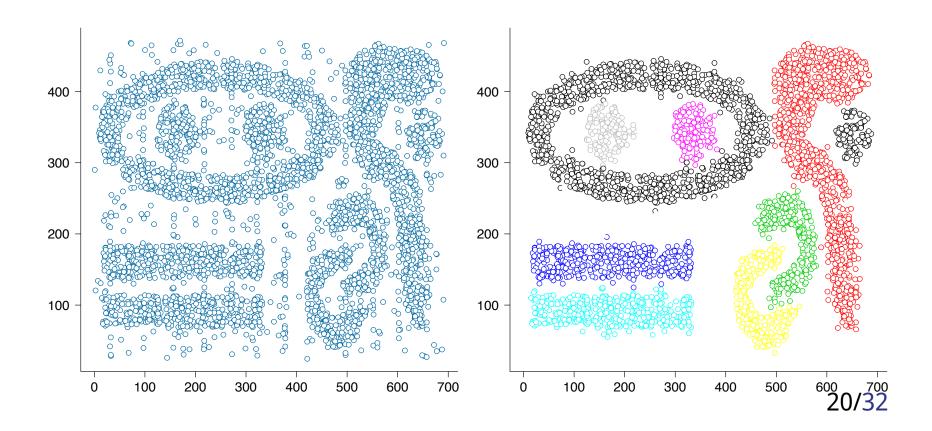
- 1. $D_{core} \leftarrow \emptyset$; $k \leftarrow 0$
- 2. **for each** $x \in D$ **do** // find core points
- 3. if $|N_{\varepsilon}(x)| \ge \text{MinPts then } D_{\text{core}} \leftarrow D_{\text{core}} \cup \{x\}$
- 4. for each $x \in D_{core}$ do
- 5. $k \leftarrow k + 1$; DensityConnected(x, k)
- 6. $\mathcal{C} \leftarrow \{C_1, \dots, C_k\}$, where $C_i \leftarrow \{x \in D \mid id(x) = i\}$
- 7. $D_{\text{Noise}} \leftarrow \{x \in D \mid \text{id}(x) \text{ is not assigned } \}$
- 8. return \mathcal{C} , D_{Noise}

Pseudocode of DBSCAN (2/2)

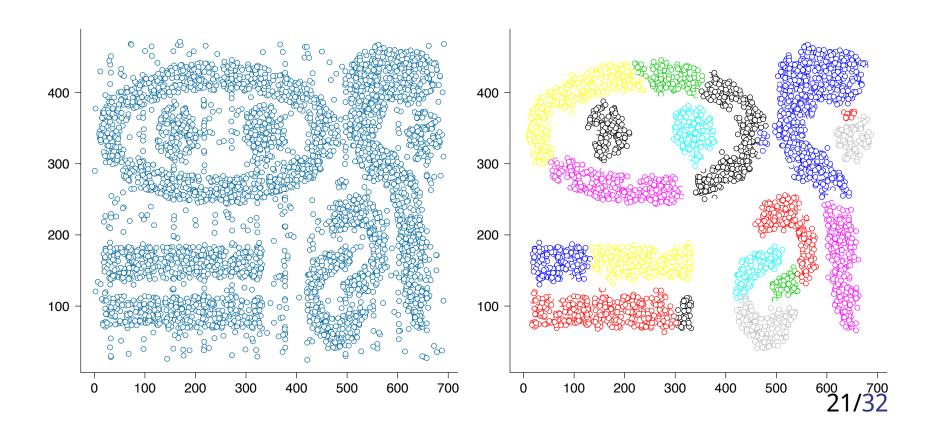
DensityConnected(x, k)

- 1. for each $y \in N_{\varepsilon}(x)$ do
- 2. $id(y) \leftarrow k$
- 3. **if** $y \in D_{core}$ **then** DensityConnected(y, k)

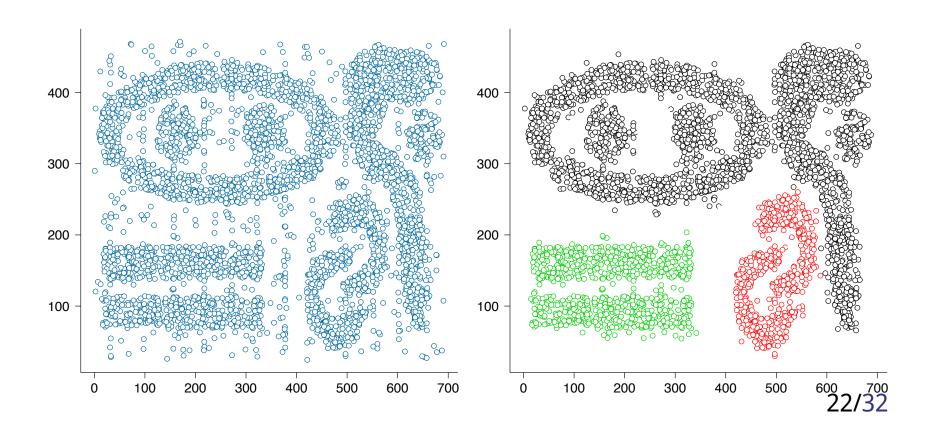
DBSCAN with $\varepsilon = 14$ and MinPts = 10



DBSCAN with $\varepsilon = 12$ and MinPts = 10



DBSCAN with $\varepsilon = 16$ and MinPts = 10



Notes on DBSCAN

- DBSCAN can find clusters of arbitrary shapes
 - The number K of clusters is not needed
- Drawbacks
 - One has to appropriately set ε and MinPts, which are often difficult
 - Runtime is slower than K-means, the time complexity is $O(n^2d)$ (v.s. O(ndk) in K-means)
 - We can speed-up using an index tree (e.g. k-d tree), but it is not efficient for high-dimensional data

Hierarchical Clustering

- Hierarchical clustering makes a hierarchy of clusters
 - We can find clusters in a cluster
- Two approaches: divisive (top-down) and agglomerative (bottom-up)
 - Divisive: Start from the largest one cluster of the entire dataset and recursively divide clusters
 - Agglomerative: Start from the smallest clusters of single data points and recursively join similar clusters

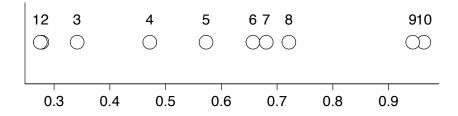
Agglomerative Hierarchical Clustering

- 1. $C \leftarrow \{C_i = \{x_i\} \mid x_i \in D\}$
- 2. repeat
- 3. $(i, j) \leftarrow \operatorname{argmin}_{i, j} \operatorname{dist}(C_i, C_j)$
- 4. $C_{ij} \leftarrow C_i \cup C_j$
- 5. $\mathcal{C} \leftarrow (\mathcal{C} \setminus \{C_i, C_j\}) \cup \{C_{ij}\}$
- 6. **until** |C| = 1

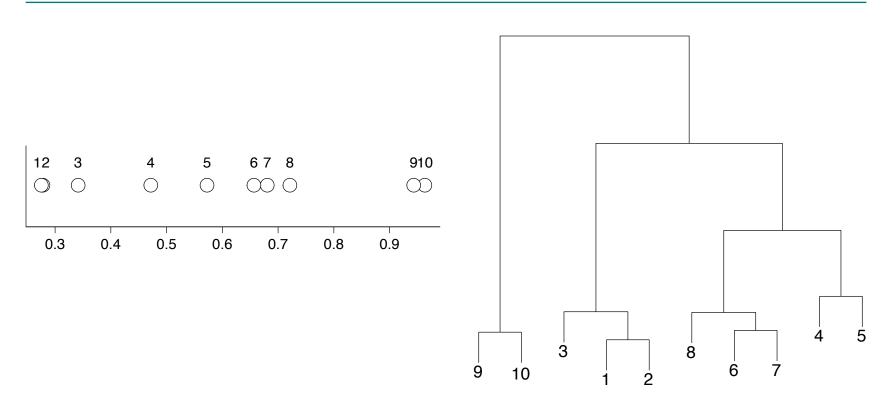
Distance between Clusters

- There are a number of choices how to measure the distance between clusters
- Single link: $\delta(C_i, C_j) = \min\{\operatorname{dist}(\boldsymbol{x}, \boldsymbol{y}) \mid \boldsymbol{x} \in C_i, \boldsymbol{y} \in C_j\}$
- Complete link: $\delta(C_i, C_j) = \max\{\text{dist}(\boldsymbol{x}, \boldsymbol{y}) \mid \boldsymbol{x} \in C_i, \boldsymbol{y} \in C_j\}$
- Group average: $\delta(C_i, C_j) = \sum_{x \in C_i} \sum_{y \in C_j} \operatorname{dist}(x, y) / |C_i| |C_j|$

Dendrogram



Dendrogram (agglomerative, complete)



Evaluation of Clusters

- How to evaluate the goodness of clusters?
- Internal and external criteria
 - Internal: Evaluate clusters without ground truth labels
 - External: Evaluate clusters using ground truth labels

Internal Criteria

- Just use $SSE(\mathcal{C})$ in K-means or log-likelihood in EM
- Silhouette index: for $x_i \in C_i$,

$$s(i) = \frac{1}{n} \sum_{i=1}^{N} \frac{b(i) - a(i)}{\max\{a(i), b(i)\}},$$

$$a(i) = \frac{1}{|C_j| - 1} \sum_{\mathbf{y} \in C_j, \ \mathbf{y} \neq \mathbf{x}} ||\mathbf{y} - \mathbf{x}_i||^2, \quad b(i) = \min_{k \in \{1, \dots, K\}, k \neq j} \frac{1}{|C_k|} \sum_{\mathbf{y} \in C_k} ||\mathbf{y} - \mathbf{x}_i||^2$$

-1 ≤ s(i) ≤ 1, higher is better

External Criteria

- Accuracy is not appropriate!
- Variation of Information: For two partitions $\mathcal{C} = \{C_1, \dots, C_K\}$ and $\mathcal{T} = \{T_1, \dots, T_M\}$ of D with |D| = n,

$$\begin{aligned} \text{VI}(\mathcal{C}, \mathcal{T}) &= -\sum_{i,j} r_{ij} \left(\log \frac{r_{ij}}{|C_i|/n} + \log \frac{r_{ij}}{|T_j|/n} \right) \\ r_{ij} &= \frac{|C_i \cap T_j|}{n} \end{aligned}$$

- 0 ≤ VI(\mathcal{C} , \mathcal{T}) ≤ min{log n, 2 log(max K, M)}, 0 being the best
- Adjusted Rand index is also often used

Dendrogram Purity

- The standard external criterion to evaluate hierarchical clusters
- Given a dataset D, its hierarchical clusters \mathcal{H} , and a ground-truth partition $\mathcal{C} = \{C_1, \dots, C_K\}$
 - LCA($m{x}_i, m{x}_j$): the smallest cluster in $\mathcal H$ that includes both $m{x}_i$ and $m{x}_j$
 - $pur(F;G) = |F \cup G|/|F|$ for a pair of clusters $F,G \in D$
 - Let $P = \{(x_i, x_j) \mid x_i, x_j \in C_k\}$
- Dendrogram purity of ${\mathcal H}$ is

$$DP(\mathcal{H}) = \frac{1}{|P|} \sum_{k=1}^{K} \sum_{\boldsymbol{x}_i, \boldsymbol{x}_j} pur(LCA(\boldsymbol{x}_i, \boldsymbol{x}_j); C_k)$$

Summary

- Popular clustering methods are introduced
 - K-means
 - EM algorithm
 - DBSCAN
 - Hierarchical clustering
- Clustering results can be evaluated internally or externally