

Inter-University Research Institute Corporation / Research Organization of Information and Systems

National Institute of Informatics

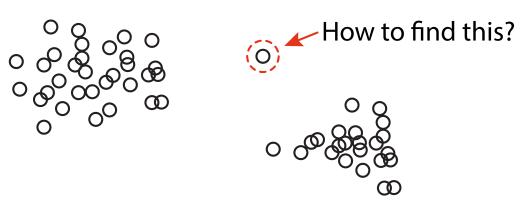
Outlier Detection

Data Mining 08 (データマイニング)

Mahito Sugiyama (杉山麿人)

Today's Outline

- Today's topic is outlier detection
 - studied in statistics, machine learning & data mining (unsupervised learning)
- **Problem:** How can we find outliers efficiently (from massive data)?



What is an Outlier (Anomaly)?

- An outlier is "an observation which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism" (by Hawkins, 1980)
 - There is no fixed mathematical definition
- Outliers appear everywhere:
 - Intrusions in network traffic, credit card fraud, defective products in industry, medical diagnosis from X-ray images
- Outliers should be detected and removed
- Outliers can cause fake results in subsequent analysis

Distance-Based Outlier Detection

- The modern distance-based approach
 - A data point is an outlier, if its locality is sparsely populated
 - One of the most popular approaches in outlier detection
 - Distribution-free
 - Easily applicable for various types of data
- See the following for other traditional model-based approaches, e.g., statistical tests or changes of variances
 - Aggarwal, C. C., Outlier Analysis, Springer (2013)
 - Kriegel, H.-P., Kröger, P., Zimak, A., Outlier Detection Techniques, Tutorial at SIGKDD2010 [Link]
 - 井手剛,入門機械学習による異常検知,コロナ社,(2015)

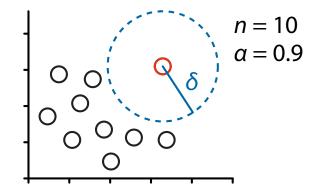
- Knorr and Ng were the first to formalize a distance-based outlier detection scheme
 - "Algorithms for mining distance-based outliers in large datasets", VLDB 1998

- Knorr and Ng were the first to formalize a distance-based outlier detection scheme
- Given a dataset *X*, an object $x \in X$ is a $DB(\alpha, \delta)$ -outlier if $|\{x' \in X \mid d(x, x') > \delta\}| \ge \alpha n$
- n = |X| (number of objects)
- $\alpha, \delta \in \mathbb{R}$ ($0 \le \alpha \le 1$) are parameters

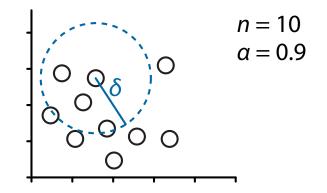
- Knorr and Ng were the first to formalize a distance-based outlier detection scheme
- Given a dataset *X*, an object $x \in X$ is a $DB(\alpha, \delta)$ -outlier if

 $|\{x' \in X \mid d(x, x') > \delta\}| \ge \alpha n$

- n = |X| (number of objects)
- $\alpha, \delta \in \mathbb{R}$ ($0 \le \alpha \le 1$) are parameters



- Knorr and Ng were the first to formalize a distance-based outlier detection scheme
- Given a dataset *X*, an object $x \in X$ is a $DB(\alpha, \delta)$ -outlier if $|\{x' \in X \mid d(x, x') > \delta\}| \ge \alpha n$
- n = |X| (number of objects)
- $\alpha, \delta \in \mathbb{R}$ ($0 \le \alpha \le 1$) are parameters



From Classification to Ranking

- Two drawbacks of $DB(\alpha, \delta)$ -outliers
 - (i) Setting the distance threshold δ is difficult in practice
 - Setting α is not so difficult since it is always close to 1

(ii) The lack of a ranking of outliers

- Ramaswamy *et al.* proposed to measure the outlierness by the *k*th-nearest neighbor (*k*th-NN) distance
 - Ramaswamy, S., Rastogi, R., Shim, K., "Efficient algorithms for mining outliers from large data sets", SIGMOD 2000

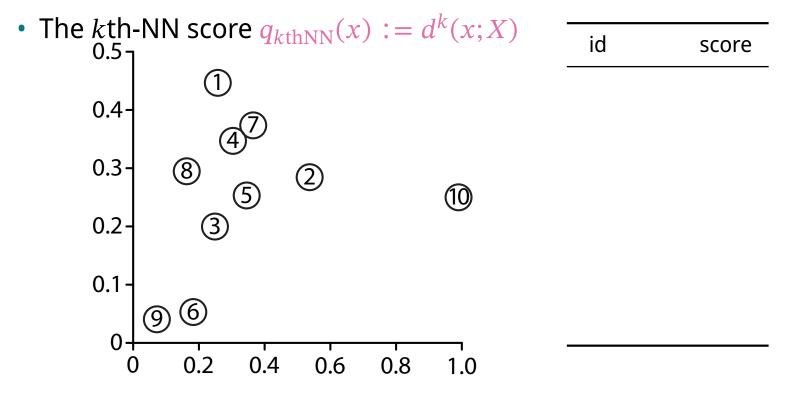
From Classification to Ranking

- Two drawbacks of $DB(\alpha, \delta)$ -outliers
 - (i) Setting the distance threshold δ is difficult in practice
 - Setting α is not so difficult since it is always close to 1

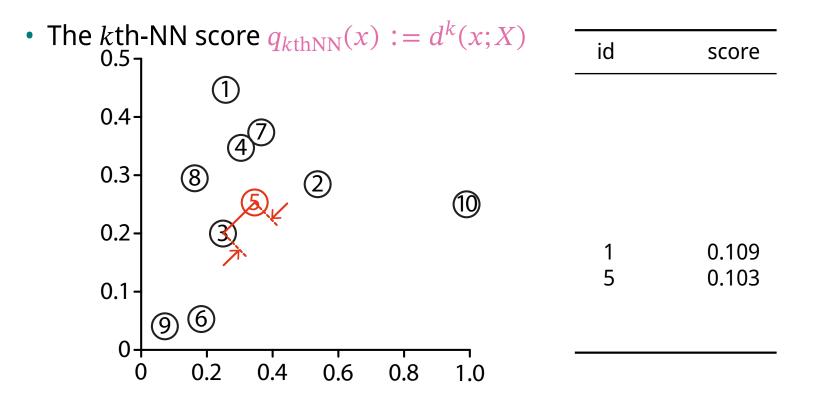
(ii) The lack of a ranking of outliers

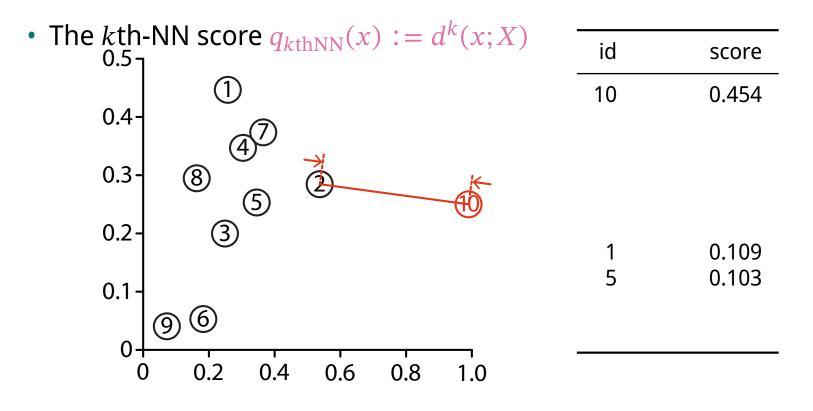
- Ramaswamy *et al.* proposed to measure the outlierness by the *k*th-nearest neighbor (*k*th-NN) distance
 - Ramaswamy, S., Rastogi, R., Shim, K., "Efficient algorithms for mining outliers from large data sets", SIGMOD 2000
- From this study, the task of DB outlier detection becomes a ranking problem (without binary classification)

- The *k*th-NN score $q_{kthNN}(x) := d^k(x;X)$
 - $d^k(x;X)$ is the distance between x and its kth-NN in X



• The *k*th-NN score $q_{kthNN}(x) := d^k(x;X)$ id score 0.5₇ 0.4-0.3-8 2 (5) (10) 0.2-3 0.109 1 0.1 6 9 0-0.2 0.4 0.6 0 0.8 1.0





• The k th.	NN score $q_{kthNN}(x)$:	$-d^k(\mathbf{x}\cdot\mathbf{x})$		
0.5 ر	$q_{kthNN}(x)$.	$-u(\Lambda,\Lambda)$	id	score
	1		10	0.454
0.4-	$\overline{\mathcal{A}}$		2	0.193
	(4)		8	0.128
0.3-	8 2		6	0.112
	(5)	(10)	9	0.112
0.2-	3		3	0.110
0.2			1	0.109
0.1			5	0.103
0.1-			4	0.067
0	96		7	0.067
0+ C	0.2 0.4 0.6 0	.8 1.0		

• Tho <i>k</i> th	-NN score q_{kthNN}	x) :- $d^k(x; Y)$		
0.5 °	This score q_{kthNN}	λ) . – $u(\lambda, \Lambda)$	id	score
	1		10	0.454
0.4-	$\overline{\mathcal{A}}$		2	0.193
	$(4)^{\prime}$		8	0.128
0.3-	8 2		6	0.112
	(a) (2) (5) (2)	\sim 10	9	0.112
0.2-	3		3	0.110
0.2	9		1	0.109
0.1			5	0.103
0.1-	- 6		4	0.067
	96		7	0.067
0+				
U	0.2 0.4 0.6	0.8 1.0		

• The <i>k</i> th NN score q (w) := $d^{k}(w, V)$		
• The <i>k</i> th-NN score $q_{k\text{thNN}}(x) := d^k(x;X)$	id	score
	2	0.193
0.4-	8	0.128
$(4)^{\prime}$	6	0.112
0.3- 8 2 5	9	0.112
(5)	3	0.110
0.2- (3)	1	0.109
	5	0.103
0.1	4	0.067
0.1-	7	0.067
96	10	0.028
	11	0.028
0 0.2 0.4 0.6 0.8 1.0		

• The kth NN score q $(x) := d^k(x; Y)$		
• The <i>k</i> th-NN score $q_{kthNN}(x) := d^k(x;X)$ 0.5	id	score
	2	0.193
0.4-	8	0.128
$(4)^{\prime}$	6	0.112
0.3- 8 2	9	0.112
5	3	0.110
0.2- 3 (1)	1	0.109
	5	0.103
0.1	4	0.067
0.1-	7	0.067
96	10	0.028
	11	0.028
0 0.2 0.4 0.6 0.8 1.0		

• The kth-NN score $q_{kthNN}(x) := d^k(x;X)$		
0.5_{T}	id	score
	10	0.454
0.4-	11	0.436
$(4)^{\prime}$	9	0.238
0.3- (8) (2)	2	0.194
	6	0.161
0.2- 3 11	8	0.150
	1	0.130
0.1	3	0.128
0.1-	7	0.122
96	5	0.110
	4	0.103
0 0.2 0.4 0.6 0.8 1.0		

Connection with DB(α , δ)-Outliers

- The *k*th-NN score $q_{kthNN}(x) := d^k(x;X)$
 - $d^k(x;X)$ is the distance between x and its kth-NN in X
- Let $\alpha = (n-k)/n$
- For any threshold δ , the set of $DB(\alpha, \delta)$ -outliers = { $x \in X \mid q_{kthNN}(x) \ge \delta$ }

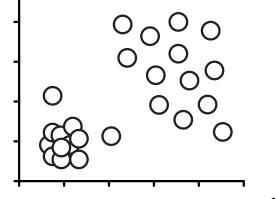
Two Drawbacks of the *k*th-NN Approach

1. Scalability; $O(n^2)$

- Solution: Partial computation of the pairwise distances to compute scores only for the top-t outliers
 - ORCA [Bay & Schwabacher, KDD 2003], iORCA [Bhaduri et al., KDD 2011]

2. Detection ability

- Solution: Introduce other definitions of the outlierness
 - Density-based (LOF) [Breunig et al. KDD 2000]
 - Angle-based (ABOD) [Kriegel et al. KDD 2008]



Partial Computation for Efficiency

- The key technique in retrieving top-*t* outliers: Approximate Nearest Neighbor Search (ANNS) principle
 - During computing $q_{kthNN}(x)$ within a for loop: $q_{kthNN}(x) = \infty$ (k = 1 for simplicity) for each $x' \in X \setminus \{x\}$

if $d(x, x') < q_{kthNN}(x)$ then $q_{kthNN}(x) = d(x, x')$ the current value $q_{kthNN}(x)$ is monotonically decreasing

- In the for loop, if $q_{kthNN}(x)$ becomes smaller than the *t*-th largest score so far, *x* never becomes an outlier
 - The **for** loop can be terminated earlier

Further Pruning with Indexing

- iORCA employed an indexing technique
 - Bhaduri, K., Matthews, B.L., Giannella, C.R., "Algorithms for speeding up distance-based outlier detection", SIGKDD 2011
- Select a point $r \in X$ randomly (reference point)
- Re-order the dataset *X* with increasing distance from *r*
- If $d(x,r) + q_{kthNN}(r) < c$, x never be an outlier
 - *c* is the cutoff, the *t*-th largest score so far
- Drawback: the efficiency strongly depends on *m*

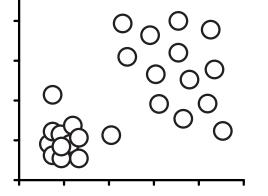
Two Drawbacks of the *k*th-NN Approach

1. Scalability; $O(n^2)$

- Solution: Partial computation of the pairwise distances to compute scores only for the top-t outliers
 - ORCA [Bay & Schwabacher, KDD 2003], iORCA [Bhaduri et al., KDD 2011]

2. Detection ability

- Solution: Introduce other definitions of the outlierness
 - Density-based (LOF) [Breunig et al. KDD 2000]
 - Angle-based (ABOD) [Kriegel et al. KDD 2008]



LOF (Local Outlier Factor) (1/2)

- $N^k(x)$: the set of kNNs of x
- Reachability distance $Rd(x; x') = max \{d^k(x', X), d(x, x')\}$

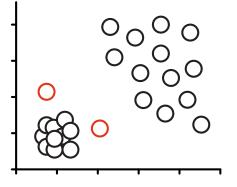
LOF (Local Outlier Factor) (2/2)

Local reachability density is

LOF(x) :=

$$\Delta(x) := \left(\frac{1}{|N^k(x)|} \sum_{x' \in N^k(x)} \operatorname{Rd}(x; x')\right)^{-}$$

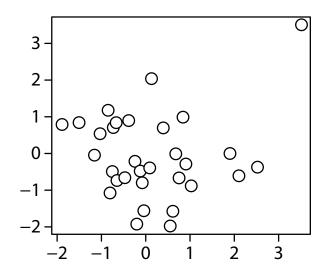
• The LOF of x is defined as

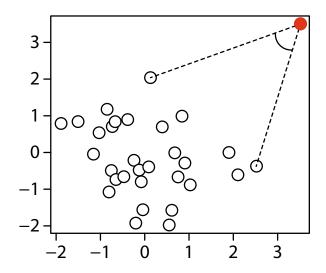


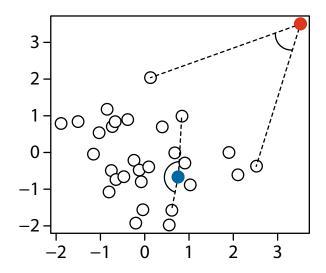
 $\frac{\left(\left.1/|N^{k}(x)|\right.\right) \sum_{y \in N^{k}(x)} \Delta(y)}{\Delta(x)}$ • The ratio of the local reachability density of x and the average of the local reachability densities of its kNNs

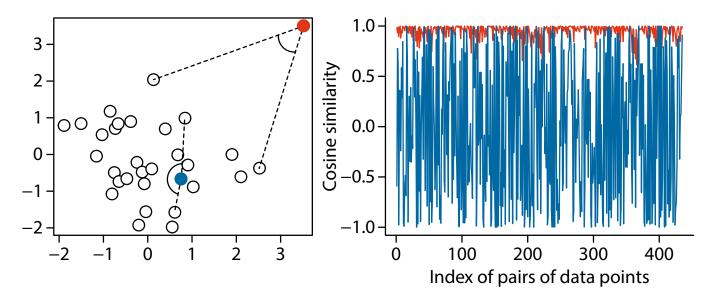
LOF is Popular

- LOF is one of the most popular outlier detection methods
 - Easy to use (only one parameter *k*)
 - Higher detection ability than *k*th-NN
- The main drawback: scalability
 - $O(n^2)$ is needed for neighbor search
 - Same as kth-NN









Definition of ABOD

- If *x* is an outlier, the variance of angles between pairs of the remaining objects becomes small
- The score ABOF(x) := $\operatorname{Var}_{y,z \in X} s(y x, z x)$
 - s(x, y) is the similarity between vectors x and y, e.g. the cosine similarity
 - s(z x, y x) correlates with the angle of y and z w.r.t. the coordinate origin x
- Pros: Parameter-free
- Cons: High computational cost $O(n^3)$

Speeding Up ABOD

- Pham and Pagh proposed a fast approximation algorithm FastVOA
 - Pham, N., Pagh, R., "A near-linear time approximation algorithm for angle-based outlier detection in high-dimensional data", SIGKDD 2012
 - It estimates the first and the second moment of the variance $Var_{y,z\in X}s(y-x, z-x)$ independently using random projections and AMS sketches
- Pros: near-linear complexity: $O(ln(m + \log n + c_1c_2))$
 - *l*: the number of hyperplanes for random projections
 - c_1, c_2 : the number of repetitions for AMS sketches
- Cons: Many parameters

Other Interesting Approaches

• iForest (isolation forest)

- Liu, F.T. and Ting, K.M. and Zhou, Z.H., "Isolation forest", ICDM 2008
- A random forest-like method with recursive partitioning of datasets
- An outlier tends to be easily partitioned
- One-class SVM
 - Schölkopf, B. et al., "Estimating the support of a high-dimensional distribution", Neural computation (2001)
 - This classifies objects into inliers and outliers by introducing a hyperplane between them
 - This can be used as a ranking method by considering the signed distance to the separating hyperplane

iForest (Isolation Forest)

• Given *X*, we construct an *i*Tree:

(i) X is partitioned into X_L and X_R such that: $X_L = \{ x \in X \mid x_q < v \}, X_R = X \setminus X_L,$ where v and q are randomly chosen

- (ii) Recursively apply to each set until it becomes a singleton
 - Can be combined with sampling
- The outlierness score i Tree(x) is defined as $2^{-h(x)/c(\mu)}$
 - h(x) is the number of edges from the root to the leaf of x
 - $\overline{h(x)}$ is the average of h(x) on *t i*Trees
 - $c(\mu) := 2H(\mu 1) 2(\mu 1)/n$ (*H* is the harmonic number)

One-class SVM

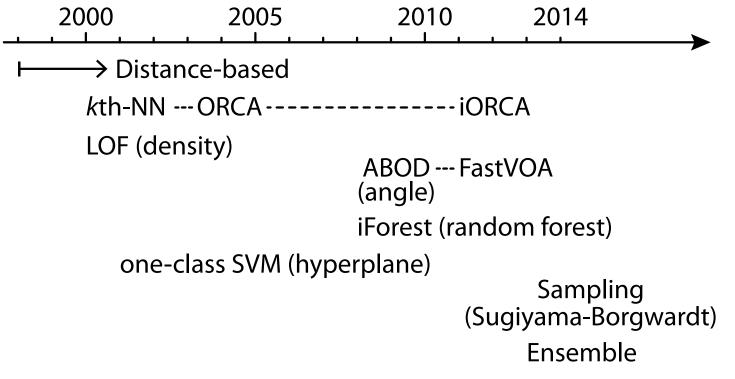
- A technique via hyperplanes by Schölkopf *et al.*
- The score of a vector **x** is $\rho (w \cdot \Phi(\mathbf{x}))$
 - **-** Φ: a feature map
 - w and ρ are the solution of the following quadratic program:

$$\min_{w \in F, \xi \in \mathbb{R}^n, \rho \in \mathbb{R}} \frac{1}{2} \|w\|^2 + \frac{1}{\nu n} \sum_{i=1}^n \xi_i - \rho$$

subject to $(w \cdot \Phi(x_i)) \ge \rho - \xi_i, \ \xi_i \ge 0$

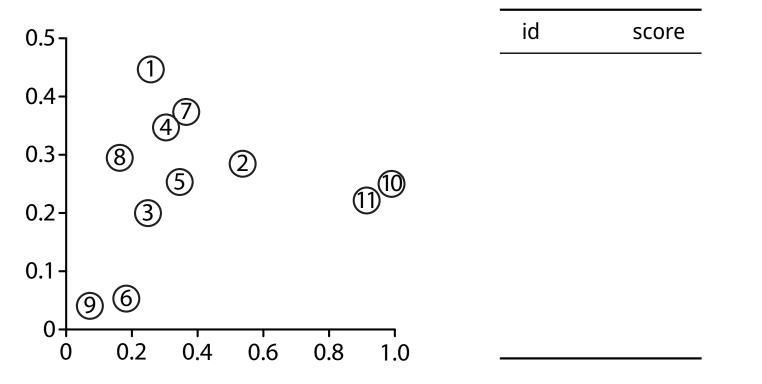
- The term $w \cdot \Phi(\mathbf{x})$ can be replaced with $\sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \mathbf{x})$ using a kernel function k

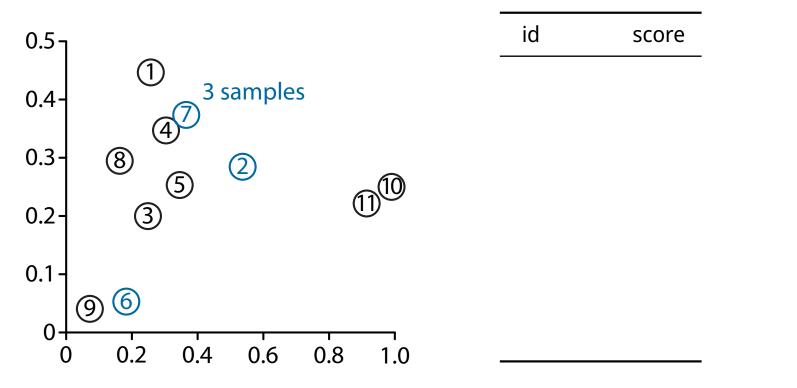
Timeline

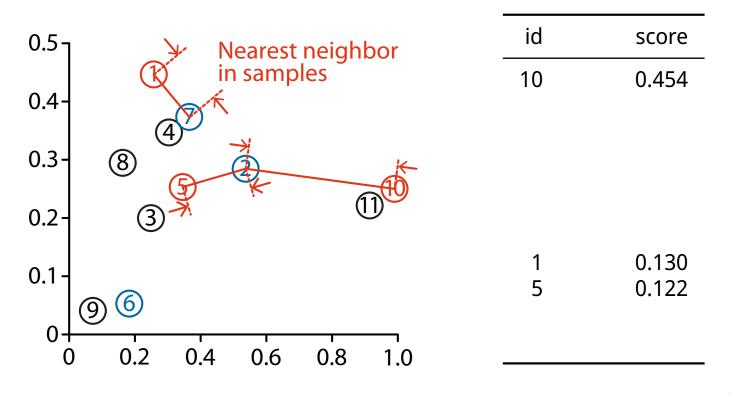


Outlier Detection via Sampling

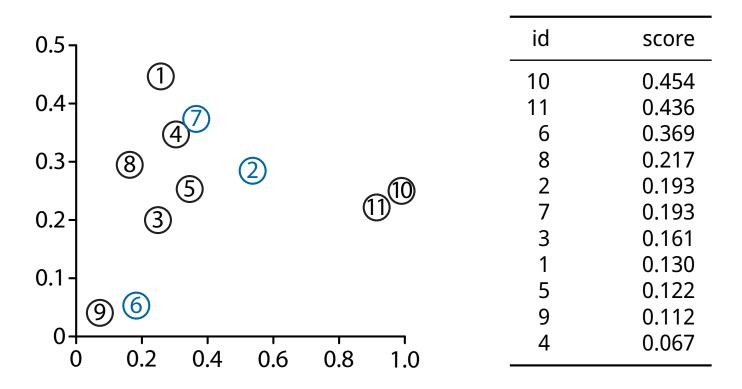
- (Sub-)Sampling was largely ignored in outlier detection
 - Finding outliers from samples seems hopeless
- Use samples as a reference set
 - Sugiyama, M., Borgwardt, K.M., "Rapid Distance-Based Outlier Detection via Sampling", NIPS 2013
 - Sample size is surprisingly small, which is sometimes 0.0001% of the total number of data points
 - Accuracy is competitive with state-of-the-art methods
- Ensemble methods are recently emerging
 - Aggarwal, C.C., Outlier Ensembles: An Introduction, Springer (2017)







26/39



26/39

Definition

- Given a dataset X (n data points, m dimensions)
- Randomly and independently sample a subset $S(X) \subset X$
- Define the score $q_{Sp}(x)$ for each object $x \in X$ as

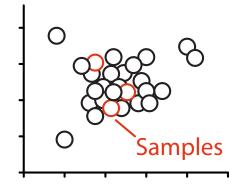
 $q_{\mathrm{Sp}}(x) := \min_{x' \in S(X)} d(x, x')$

- Input parameter: the number of samples s = |S(X)|
- The time complexity is *O*(*nms*) and the space complexity is *O*(*ms*)

Intuition

- Outliers should be significantly different from almost all inliers

 → A sample set includes only inliers with high probability
 → Outliers get high scores
- For each inlier, at least one similar data point is included in the sample set with high probability
- This scheme is expected to work with small sample sizes
 - If we pick up too many samples, some rare points, similar to an outlier, slip into the sample set



Notations

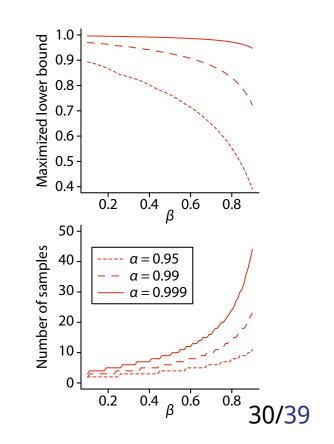
- $X(\alpha; \delta)$: the set of Knorr and Ng's DB(α, δ)-outliers
- $x \in X(\alpha; \delta)$ if $|\{x' \in X \mid d(x, x') > \delta\}| \ge \alpha n$
 - $\overline{X}(\alpha; \delta) = X \setminus X(\alpha; \delta)$: the set of inliers
 - α is expected to close to 1, meaning that an outlier is distant from almost all points
- Define β ($0 \le \beta \le \alpha$) as the minimum value s.t. $\forall x \in \overline{X}(\alpha; \delta), |\{x' \in X \mid d(x, x') > \delta\}| \le \beta n$

Theoretical Results

- 1. For $x \in X(\alpha; \delta)$ and $x' \in \overline{X}(\alpha; \delta)$, $\Pr(q_{\text{Sp}}(x) > q_{\text{Sp}}(x')) \ge \alpha^{s}(1 - \beta^{s})$
 - (s is the number of samples)
 - This lower bound tends to be high in a typical setting (α is large, β is moderate)
- 2. This bound is maximized at $\log \alpha$

 $s = \log_{\beta} \frac{\log \alpha}{\log \alpha + \log \beta}$

- This value tends to be small



Evaluation criteria

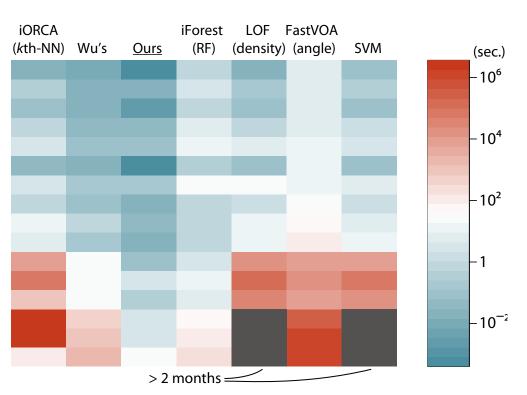
- Precision v.s. Recall (Sensitivity)
 - Recall = TP / (TP + FN)
 - Precision = TP / (TP + FP)
- Effectiveness is usually measured by AUPRC (area under the precision-recall curve)
 - Equivalent to the average precision over all possible cut-offs on the ranking of outlierness
- cf. ROC curve: False Positive Rate (FPR) v.s. Sensitivity
 - FPR = FP / (FP + TN) = 1 Specificity
 - Sensitivity = TP / (TP + FN)

Relationship

	Condition Positive	Condition Negative	
Test Outcome Positive	True Positive	False Positive (Type I Error)	Precision TP / (TP + FP)
Test Outcome Negative	False Negative (Type II Error)	True Negative	
Sensitivity (Recall) TP / (TP + FN)	Specificity TN / (FP + TN) = 1 – FPR		
	IP / (IP + FN)	False Positive Rate (FPR) FP / (FP + TN)	

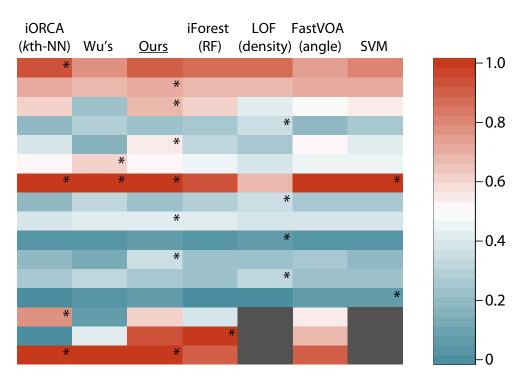
Results (Runtime)

	# of objects	# of outliers	# of dims
		# OF OUTHERS	
lonosphere	351	126	34
Arrhythmia	452	207	274
Wdbc	569	212	30
Mfeat	600	200	649
lsolet	960	240	617
Pima	768	268	8
Gaussian*	1000	30	1000
Optdigits	1688	554	64
Spambase	4601	1813	57
Statlog	6435	626	36
Skin	245057	50859	3
Pamap2	373161	125953	51
Covtype	286048	2747	10
Kdd1999	4898431	703067	6
Record	5734488	20887	7
Gaussian*	1000000	30	20



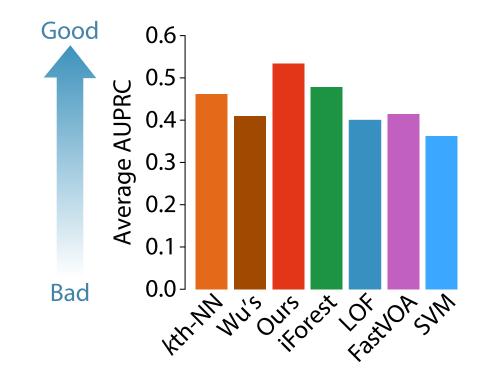
Results (Accuracy)

	# of objects	# of outliers	# of dims
lonosphere	351	126	34
Arrhythmia	452	207	274
Wdbc	569	212	30
Mfeat	600	200	649
Isolet	960	240	617
Pima	768	268	8
Gaussian*	1000	30	1000
Optdigits	1688	554	64
Spambase	4601	1813	57
Statlog	6435	626	36
Skin	245057	50859	3
Pamap2	373161	125953	51
Covtype	286048	2747	10
Kdd1999	4898431	703067	6
Record	5734488	20887	7
Gaussian*	1000000	30	20



34/39

Average of AUPRC over all datasets

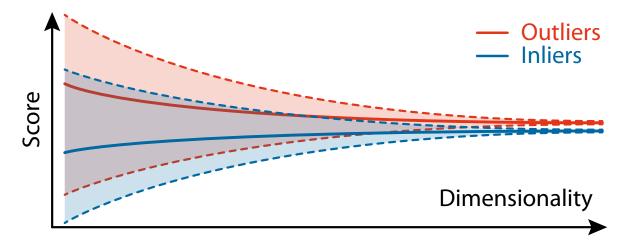


How about High-dimensional Data?

- So-called "the curse of dimensionality"
- There is an interesting paper that studies outlier detection in high-dimensional data
 - Zimek, A., Schubert, E., Kriegel, H.-P., "A survey on unsupervised outlier detection in high-dimensional numerical data", Statistical Analysis and Data Mining (2012)

Fact about High-Dimensional Data

- High-dimensionality is not always the problem
 - If all attributes are relevant, detecting outliers becomes easier and easier as attributes (dimensions) increases
 - Of course, it is not the case if irrelevant attributes exist



When Data Is Supervised

- First choice: Optimize parameters by cross validation
 - Sample size in Sugiyama-Borgwardt method
 - Determine the threshold for outliers from rankings
- Classification methods can be used, but it is generally difficult as positive and negative data are unbalanced

Summary

- *k*th-NN method is the standard
- If there are different density regions, LOF is recommended
- The most advanced (yet simple) method is the sampling-based method
 - Sampling is a powerful tool in outlier detection