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Today’s Outline
• Today’s topic is classification

– The main task of supervised learning
• Predict the label of a data point

– If labels are continuous (numeric), the task is usually called regression
• Cover basic classification methods

– Naïve Bayes, logistic regression, 𝑘NN, decision tree
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Bayes Approach to Classification
• Given a supervised dataset 𝐷 = {(𝒙1, 𝑦1), (𝒙2, 𝑦2),… , (𝒙𝑁 , 𝑦𝑁)},
𝒙𝑖 ∈ ℝ𝑛 (feature vector), 𝑦𝑖 ∈ 𝐶 = {𝑐1, 𝑐2,… , 𝑐𝐾} (label)

• The Bayes approach:
Estimate the posterior probability 𝑃(𝑐 | 𝒙) from data and
predict the class 𝑦 of 𝒙 as �̂� = argmax𝑐∈𝐶 𝑃(𝑐 | 𝒙)
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Bayes Classification
• Use the Bayes theorem:

𝑃(𝑐 | 𝒙) =
𝑃(𝒙 | 𝑐) ⋅ 𝑃(𝑐)

𝑃(𝒙)
– 𝑃(𝑐 | 𝒙): posterior, 𝑃(𝒙 | 𝑐): likelihood, 𝑃(𝑐): prior
– 𝑃(𝒙) =

∑
𝑐∈𝐶 𝑃(𝒙 | 𝑐) ⋅ 𝑃(𝑐)

• Since the denominator 𝑃(𝒙) is independent of classes 𝑐
(just a normalizing constant),
�̂� = argmax

𝑐∈𝐶
𝑃(𝑐 | 𝒙) = argmax

𝑐∈𝐶
𝑃(𝒙 | 𝑐)𝑃(𝑐)
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Prior Probability Estimation
• Goal: Estimate the prior 𝑃(𝑐) from a dataset 𝐷
• For a given dataset 𝐷, for each class 𝑐 ∈ 𝐶,
𝐷𝑐 = {𝒙 ∣ (𝒙, 𝑦) ∈ 𝐷 and 𝑦 = 𝑐}

• We can directly estimate the prior 𝑃(𝑐) as the ratio:

�̂�(𝑐) =
|𝐷𝑐|
|𝐷|
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Naïve Bayes Model
• Goal: Estimate the likelihood 𝑃(𝒙 | 𝑐) from a dataset 𝐷
• Assume that each feature is independent (the model is “naïve”):
𝑃(𝒙 | 𝑐) =

∏𝑛
𝑗=1 𝑃(𝑥

𝑗 | 𝑐), 𝒙 = (𝑥1, 𝑥2,… , 𝑥𝑛)

• For each 𝑗 ∈ {1, 2,… , 𝑛}, if we assume data is normally distributed,

𝑃(𝑥𝑗 | 𝑐) ∝ 𝑓(𝑥𝑗;𝜇𝑗𝑐 , 𝜎
𝑗 2
𝑐 ) = 1

√
2𝜋𝜎𝑗𝑐

exp (−
(𝑥𝑗 − 𝜇𝑗𝑐 )2

2𝜎𝑗 2𝑐
)

𝑃(𝒙 | 𝑐) =
𝑛∏

𝑗=1
𝑃(𝑥𝑗 | 𝑐) ∝

𝑛∏

𝑗=1
𝑓(𝑥𝑗;𝜇𝑗𝑐 , 𝜎

𝑗 2
𝑐 )
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Algorithm 1: Naïve Bayes Classifier
1 LEARN(𝐷)
2 foreach 𝑐 ∈ 𝐶 do
3 𝐷𝑐 ← {𝒙 ∣ (𝒙, 𝑐) ∈ 𝐷}
4 �̂�(𝑐)← |𝐷𝑐| ∕ |𝐷|
5 foreach 𝑗 ∈ {1, 2,… , 𝑛} do
6 �̂�𝑗𝑐 ← (1∕|𝐷𝑐|)

∑
𝒙∈𝐷𝑐

𝑥𝑗

7 �̂�𝑗 2𝑐 ← (1∕|𝐷𝑐|)
∑

𝒙∈𝐷𝑐
(𝑥𝑗 − �̂�𝑗𝑐 )2

8 CLASSIFY(𝒙)
9 �̂� ← argmax𝑐∈𝐶 �̂�(𝑐)

∏𝑛
𝑗=1 𝑓(𝑥

𝑗; �̂�𝑗𝑐 , �̂�
𝑗 2
𝑐 )
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If Features Are Categorical
• Assume that the domain of 𝑗 th feature is finite: Σ𝑗 = {𝑠1, 𝑠2,… , 𝑠𝑚𝑗 }

– The feature 𝑗 is called categorical (discrete)
• Likelihood for each categorical value 𝑠𝑖 ∈ Σ𝑗 is estimated as

�̂�(𝑠𝑖 | 𝑐) =
|{𝒙 ∈ 𝐷𝑐 ∣ 𝑥𝑗 = 𝑠𝑖}|

|𝐷𝑐|
• Label 𝑦 of a test point 𝒙 is estimated as

�̂� = argmax
𝑐∈𝐶

�̂�(𝑐)
𝑛∏

𝑗=1
�̂�(𝑥𝑗 | 𝑐)
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kNN approach
• The 𝑘NN (𝑘 Nearest Neighbor) classifier predicts the label of 𝒙
to the majority class among its 𝑘 nearest neighbors

• Sort a given dataset 𝐷 as (𝒙(1), 𝑦(1)), (𝒙(2), 𝑦(2)),… , (𝒙(𝑁), 𝑦(𝑁)) in
increasing order according to the distance from a test point 𝒙
– Euclidean distance ‖𝒙𝑖 − 𝒙‖2 =

√∑𝑛
𝑗=1(𝑥

𝑗
𝑖 − 𝑥𝑗)2 is typically used

• Take the top-𝑘 points (𝒙(1), 𝑦(1)), (𝒙(2), 𝑦(2)),… , (𝒙(𝑘), 𝑦(𝑘)) and
�̂� = argmax

𝑐∈𝐶
|{(𝒙(𝑖), 𝑦(𝑖)) ∣ 𝑖 ≤ 𝑘 and 𝑦(𝑖) = 𝑐}|

– |{(𝒙(𝑖), 𝑦(𝑖)) ∣ 𝑖 ≤ 𝑘 and 𝑦(𝑖) = 𝑐}|∕𝑘 can be viewed as posterior 𝑃(𝑐 | 𝒙)
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Logistic Regression
• Logistic regression is a binary classification model
• An auxiliary target variable 𝑧 is modeled as

𝑧 =
𝑛∑

𝑗=1
𝑤𝑗𝑥𝑗 + 𝑤0 = ⟨𝒘,𝒙⟩ + 𝑤0

• The logistic function 𝑓 is a mapping from ℝ to the interval [0, 1]:

𝑓(𝑧) =
exp(𝑧)

exp(𝑧) + 1 = 1
1 + exp(−𝑧)
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Logistic Regression
• The logistic function becomes

𝑓(𝒙) = 1
1 + exp (−(⟨𝒘,𝒙⟩ + 𝑤0))

• The inverse 𝑔 = 𝑓−1 is called the logit or log-odds function:

𝑔(𝑓(𝒙)) = log (
𝑓(𝒙)

1 − 𝑓(𝒙)
) = ⟨𝒘,𝒙⟩ + 𝑤0

• The goal of logistic regression is to estimate 𝒘 and 𝑤0 from a
dataset 𝐷
– 𝑓(𝒙) shows probability of belonging to the class 1, thus

its label 𝑦 = 1 if 𝑓(𝒙) ≥ 0.5
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Maximum Likelihood Estimation
• The log-likelihood of the parameter (𝒘, 𝑤0) is

𝐿(𝒘, 𝑤0) =
𝑁∑

𝑖=1
𝑦𝑖 log𝑓(𝒙𝑖) + (1 − 𝑦𝑖) log(1 − 𝑓(𝒙𝑖)), 𝑥𝑖 ∈ ℝ𝑛, 𝑦𝑖 ∈ {0, 1}

– The objective of logistic regression is maximization of 𝐿(𝒘, 𝑤0)

• The gradient w.r.t. 𝑤𝑗 is
𝜕𝐿(𝒘, 𝑤𝑝)

𝜕𝑤𝑗 =
𝑁∑

𝑖=1

(
𝑦𝑖 − 𝑓(𝒙𝑖)

)
𝑥𝑗𝑖

• Since log-likelihood is convex, it is maximized by gradient ascent
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Logistic Regression by Gradient Ascent
Algorithm 2: Logistic Regression

1 Initialize 𝒘 and 𝑤0 with some values;
2 𝑡 ← 0;
3 repeat
4 foreach 𝑗 ∈ {1, 2,… , 𝑛} do
5 𝑤𝑗,(𝑡+1) ← 𝑤𝑗,(𝑡) + 𝜀

∑𝑁
𝑖=1

(
𝑦𝑖 − 𝑓(𝒙𝑖)

)
𝑥𝑗𝑖

6 𝑡 ← 𝑡 + 1
7 until 𝒘(𝑡) = 𝒘(𝑡+1);
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Decision Tree
• Decision tree obtains a tree-structured classification rules by
recursively partitioning data points

• In a decision tree, each node represents a binary classification rule
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Algorithm 3: Decision Tree
1 DECISIONTREE(𝐷, 𝜂, 𝜋)
2 if |𝐷| ≤ 𝜂 ormax𝑐∈𝐶 |𝐷𝑐| ∕ |𝐷| ≥ 𝜋 then
3 create a leaf node and label it with argmax𝑐∈𝐶 |𝐷𝑐| ∕ |𝐷|
4 return
5 (split rule, score∗)← (∅, 0)
6 foreach 𝑗 ∈ {1, 2,… , 𝑛} do
7 (𝑣, score)← EVALUATEFEATURE(𝐷, j)
8 if score > score∗ then (split rule, score∗)← (𝑋𝑗≤ 𝑣, score) ;
9 𝐷𝑌 ← {𝒙 ∈ 𝐷 ∣ 𝒙 satisfies the split rule }; 𝐷𝑁 ← 𝐷 ⧵ 𝐷𝑌
10 Create a node with the split rule
11 DECISIONTREE(𝐷𝑌 , 𝜂, 𝜋); DECISIONTREE(𝐷𝑁 , 𝜂, 𝜋)
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Split Rule
• If the 𝑗 th feature (variable) 𝑋𝑗 is numeric (continuous),
a split rule is in the form of “𝑋𝑗 ≤ 𝑣”
– For a point 𝒙, it is satisfied if 𝑥𝑗 ≤ 𝑣

• If the 𝑗 th feature (variable) 𝑋𝑗 is categorical (discrete),
a split rule is in the form of “𝑋𝑗 ∈ 𝑉”
– For a point 𝒙, it is satisfied if 𝑥𝑗 ∈ 𝑉
– Replace 𝑋𝑗 ≤ 𝑣 with 𝑋𝑗 ∈ 𝑉 in the line 8 of Algorithm 3 if 𝑋𝑗 is

categorical
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Split Rule Evaluation: Entropy
• Information gain: Gain(𝐷,𝐷𝑌 , 𝐷𝑁) = 𝐻(𝐷) −𝐻(𝐷𝑌 , 𝐷𝑁)

– Entropy:
𝐻(𝐷) = −

∑

𝑐∈𝐶
𝑃𝐷(𝑐) log𝑃𝐷(𝑐)

◦ 𝑃𝐷(𝑐) is the probability of the class 𝑐 in 𝐷
◦ It is larger if 𝑃𝐷(𝑐) is equally distributed

– Split entropy:

𝐻(𝐷𝑌 , 𝐷𝑁) =
|𝐷𝑌|
|𝐷|

𝐻(𝐷𝑌) +
|𝐷𝑁|
|𝐷|

𝐻(𝐷𝑁)

• The higher the information gain, the better the split rule

17/22



Split Rule Evaluation: Gini Index
• Information gain: Gain(𝐷,𝐷𝑌 , 𝐷𝑁) = 𝐺(𝐷) − 𝐺(𝐷𝑌 , 𝐷𝑁)

– Gini index:
𝐺(𝐷) = 1 −

∑

𝑐∈𝐶
𝑃(𝑐 | 𝐷)2

◦ 𝑃𝐷(𝑐) is the probability of the class 𝑐 in 𝐷
◦ It is larger if 𝑃𝐷(𝑐) is equally distributed

– Weighted Gini index:

𝐺(𝐷𝑌 , 𝐷𝑁) =
|𝐷𝑌|
|𝐷|

𝐺(𝐷𝑌) +
|𝐷𝑁|
|𝐷|

𝐺(𝐷𝑁)

• The higher the information gain, the better the split rule
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Algorithm 4: Evaluate Numeric Feature
1 EVALUATEFEATURENUMERIC(𝐷, 𝑗)
2 sort 𝐷 on feature 𝑗 as 𝒙(1),𝒙(2),… ,𝒙(𝑁) s.t. 𝑥

𝑗
(𝑖) ≤ 𝑥𝑗(𝑖+1)

3 𝑀 ← {𝑣1, 𝑣2,… , 𝑣𝑁−1} s.t. 𝑣𝑖 = (𝑥𝑗(𝑖)+𝑥
𝑗
(𝑖)) ∕ 2; // Set of midpoints

4 (𝑣∗, score∗)← (∅, 0)
5 foreach 𝑣 ∈ 𝑀 do
6 𝐷𝑌 ← {(𝒙, 𝑦) ∈ 𝐷 ∣ 𝑥𝑗 ≤ 𝑣}; 𝐷𝑁 ← 𝐷 ⧵ 𝐷𝑌
7 foreach 𝑐 ∈ 𝐶 do
8 �̂�(𝑐 | 𝐷𝑌)← |𝐷𝑌,𝑐| ∕ |𝐷𝑌|; �̂�(𝑐 | 𝐷𝑁)← |𝐷𝑁,𝑐| ∕ |𝐷𝑁|

9 score ← Gain(𝐷,𝐷𝑌 , 𝐷𝑁)
10 if score > score∗ then (𝑣∗, score∗)← (𝑣, score) ;
11 return (𝑣∗, score∗) 19/22



Algorithm 5: Evaluate Categorical Feature
1 EVALUATEFEATURECATEGORICAL(𝐷, 𝑗)
2 (𝑣∗, score∗)← (∅, 0)
3 foreach 𝑉 ⊆ Σ𝑗 do
4 𝐷𝑌 ← {(𝒙, 𝑦) ∈ 𝐷 ∣ 𝑥𝑗 ∈ 𝑉}; 𝐷𝑁 ← 𝐷 ⧵ 𝐷𝑌
5 foreach 𝑐 ∈ 𝐶 do
6 �̂�(𝑐 | 𝐷𝑌)← |𝐷𝑌,𝑐| ∕ |𝐷𝑌|; �̂�(𝑐 | 𝐷𝑁)← |𝐷𝑁,𝑐| ∕ |𝐷𝑁|

7 score ← Gain(𝐷,𝐷𝑌 , 𝐷𝑁)
8 if score > score∗ then (𝑉∗, score∗)← (𝑉, score) ;
9 return (𝑉∗, score∗)
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Random Forest
• To avoid overfitting, ensemble of decision trees can be used
• Breiman (2001) introduced random forests, a collection of decision
trees
– This method is known to be effective in practice

• Subsample a dataset (𝑁′ points and 𝑛′ features) 𝑡 times
• Construct a decision tree for each subsampled dataset
• Classification is performed by taking a majority vote across the
trees
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Summary
• Naïve Bayes classifier perform classification using the Bayes
theorem
– Assumption: Features are independent

• 𝑘NN is a non-parametric classification method
• Logistic regression is easy to fit and interpret
• Decision tree can obtain interpretable classification rules
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