
January 5, 2024

SVM and Kernel Methods
Data Mining 10 (データマイニング)

Mahito Sugiyama (杉山麿人)

Today’s Outline
• Today’s topic is support vector machines (SVMs) and kernel
methods

• SVM performs binary classification by maximizing the margin
– It is a popular supervised classification method

• SVM can perform nonlinear classification for structured data
using kernel trick

• Graph kernels for classification for graph structured data

1/47

Classification Problem Setting
• Given a supervised dataset 𝐷 = {(𝒙1, 𝑦1), (𝒙2, 𝑦2),… , (𝒙𝑛, 𝑦𝑛)},
𝒙𝑖 ∈ ℝ𝑑 (feature vector), 𝑦𝑖 ∈ 𝐶 = {−1, 1} (label)

• Use a decision function (hyperplane) in the form of
𝑓(𝒙) = ⟨𝒘,𝒙⟩ + 𝑤0 =

∑𝑑
𝑗=1𝑤

𝑗𝑥𝑗 + 𝑤0

• A classifier 𝑔(𝒙) is given as

𝑔(𝒙) = { 1 if 𝑓(𝒙) > 0,
−1 if 𝑓(𝒙) < 0

• Goal: Find (𝒘, 𝑤0) that correctly classifies the dataset

2/47

Classification by Hyperplane

F
G A hypothesis, a hyperplane

in general, is uniquely speci�ed
by a pair (w, b)

(xi, 1)
(xj, –1) Data

f(x) = wx + b = 0

3/47

Learning Procedure of Perceptron
1. 𝒘← 0, 𝑏 ← 0 (or a small random value) // initialization
2. for 𝑖 = 1, 2, 3,… do
3. Receive 𝑖-th pair (𝒙𝑖 , 𝑦𝑖)
4. Compute 𝑎 =∑𝑑

𝑗=1𝑤
𝑗𝑥𝑗𝑖 + 𝑏

5. if 𝑦𝑖 ⋅ 𝑎 < 0 then // 𝒙𝑖 is misclassified
6. 𝒘← 𝒘 + 𝑦𝑖𝒙𝑖 // update the weight
7. 𝑏 ← 𝑏 + 𝑦𝑖 // update the bias
8. end if
9. end for

4/47

Correctness of Perceptron
• It is guaranteed that a perceptron always converges
to a correct classifier
– A correct classifier is a function 𝑓 s.t.

𝑓(𝒙) > 0 if 𝑦 = 1,
𝑓(𝒙) < 0 if 𝑦 = −1

– The convergence theorem
• Note: there are (infinitely) many functions
that correctly classify 𝐹 and 𝐺
– A perceptron converges to one of them

5/47

Support Vector Machines (SVMs)
• A dataset 𝐷 is separable by 𝑓 ⇐⇒ 𝑦𝑖𝑓(𝒙𝑖) > 0, ∀𝑖 ∈ {1, 2,… , 𝑛}
• The margin is the distance from the classification hyperplane
to the closest data point

• Support vector machines (SVMs) tries to find a hyperplane that
maximizes the margin

6/47

Margin

Margin

⟨w, x⟩ + w0 = 0

7/47

Formulation of SVMs
• The distance from a point 𝒙𝑖 to a hyperplane
𝑓(𝒙) = ⟨𝒘,𝒙⟩ + 𝑤0 = 0 is
|𝑓(𝒙𝑖)|
‖𝒘‖

=
|||⟨𝒘,𝒙𝑖⟩ + 𝑤0

|||
‖𝒘‖

• Since 𝑦𝑖𝑓(𝒙𝑖) > 0 should be satisfied, assume that there exists
𝐵 > 0 such that 𝑦𝑖𝑓(𝒙𝑖) ≥ 𝐵 for all 𝑖 ∈ {1, 2,… , 𝑛}

• The margin maximization problem can be written as

max
𝒘,𝑤0,𝐵

𝐵
‖𝒘‖

subject to 𝑦𝑖𝑓(𝒙𝑖) ≥ 𝑀, 𝑖 ∈ {1, 2,… , 𝑛}

– 𝐵 = min𝑖∈{1,2,…,𝑛} |||⟨𝒘, 𝑥𝑖⟩ + 𝑤0
|||

8/47

Hard Margin SVMs
• We can eliminate 𝐵 and obtain
max
𝒘,𝑤0

1
‖𝒘‖

subject to 𝑦𝑖𝑓(𝒙𝑖) ≥ 1, 𝑖 ∈ {1, 2,… , 𝑛}

• This is equivalent to
min
𝒘,𝑤0

‖𝒘‖2 subject to 𝑦𝑖𝑓(𝒙𝑖) ≥ 1, 𝑖 ∈ {1, 2,… , 𝑛}

– The standard formulation of hard margin SVMs
– There are data points 𝒙𝑖 satisfying 𝑦𝑖𝑓(𝒙𝑖) = 1, called support vectors
– The solution does not change even data points that are not support
vectors are removed

9/47

Margin

Margin

⟨w, x⟩ + w0 = 0

Support vector

10/47

Soft Margin
• Datasets are not often separable
• Extend SV classification to soft margin by relaxing ⟨𝒘,𝒙⟩ + 𝑤0 ≥ 1
• Change the constraint 𝑦𝑖𝑓(𝒙𝑖) ≥ 1 using the slack variable 𝜉𝑖 to
𝑦𝑖𝑓(𝒙𝑖) = 𝑦𝑖 (⟨𝒘,𝒙⟩ + 𝑤0) ≥ 1 − 𝜉𝑖 , 𝑖 ∈ {1, 2,… , 𝑛}

• The formulation of soft margin SVM (C-SVM) is

min
𝒘,𝑤0,𝝃

1
2‖𝒘‖

2 + 𝐶
∑

𝑖∈{1,2,…,𝑛}
𝜉𝑖 s.t. 𝑦𝑖𝑓(𝒙𝑖) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 ∈ {1, 2,… , 𝑛}

– 𝐶 is called the regularization parameter

11/47

Soft Margin

C is large C is small

12/47

Data Point Location
• 𝑦𝑖𝑓(𝒙𝑖) > 1: 𝒙𝑖 is outside margin

– These points do not affect to the classification hyperplane
• 𝑦𝑖𝑓(𝒙𝑖) = 1: 𝒙𝑖 is on margin
• 𝑦𝑖𝑓(𝒙𝑖) < 1: 𝒙𝑖 is inside margin

– These points do not exist in hard margin
• Points on margin and inside margin are support vectors

13/47

Dual Problem (1/4)
• The formulation of C-SVM
min
𝒘,𝑤0,𝝃

1
2‖𝒘‖

2 + 𝐶
∑

𝑖∈{1,2,…,𝑛}
𝜉𝑖 s.t. 𝑦𝑖𝑓(𝒙𝑖) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 ∈ {1, 2,… , 𝑛}

is called the primal problem
• This is usually solved via the dual problem
• Make the Lagrange function using 𝜶 = (𝛼1,… , 𝛼𝑛),𝝁 = (𝜇1,… , 𝜇𝑛):

𝐿(𝒘, 𝑤0, 𝝃 ,𝜶,𝝁) =
1
2‖𝒘‖

2 + 𝐶
∑

𝑖∈[𝑛]
𝜉𝑖 −

∑

𝑖∈[𝑛]
𝛼𝑖
(
𝑦𝑖𝑓(𝒙𝑖) − 1 + 𝜉𝑖

)
−
∑

𝑖∈[𝑛]
𝜇𝑖𝜉𝑖

– [𝑛] = {1, 2,… , 𝑛}

14/47

Dual Problem (2/4)
• Let us consider
𝐷(𝜶,𝝁) = min

𝒘,𝑤0,𝝃
𝐿(𝒘, 𝑤0, 𝝃 ,𝜶,𝝁)

and its maximization
max

𝜶≥0,𝝁≥0
𝐷(𝜶,𝝁) = max

𝜶≥0,𝝁≥0
min
𝒘,𝑤0,𝝃

𝐿(𝒘, 𝑤0, 𝝃 ,𝜶,𝝁)

• The inside minimization is achieved when
𝜕𝐿
𝜕𝒘

= 𝒘 −
∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖𝒙𝑖 = 0, 𝜕𝐿

𝜕𝑤0
= −

∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖 = 0, 𝜕𝐿

𝜕𝜉𝑖
= 𝐶 − 𝛼𝑖 − 𝜇𝑖 = 0

15/47

Dual Problem (3/4)
• Putting the three conditions to the Lagrange function
to remove 𝒘, 𝑤0, and 𝝃 , yielding

𝐿 = 1
2‖𝒘‖

2 + 𝐶
∑

𝑖∈[𝑛]
𝜉𝑖 −

∑

𝑖∈[𝑛]
𝛼𝑖
(
𝑦𝑖𝑓(𝒙𝑖) − 1 + 𝜉𝑖

)
−
∑

𝑖∈[𝑛]
𝜇𝑖𝜉𝑖

= 1
2‖𝒘‖

2 −
∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖⟨𝒘,𝒙𝑖⟩ − 𝑤0

∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖 +

∑

𝑖∈[𝑛]
𝛼𝑖 +

∑

𝑖∈[𝑛]
(𝐶 − 𝛼𝑖 − 𝜇𝑖)𝜉𝑖

= −12
∑

𝑖,𝑗∈[𝑛]
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗⟨𝒙𝑖 ,𝒙𝑗⟩ +

∑

𝑖∈[𝑛]
𝛼𝑖

16/47

Dual Problem (4/4)
• It can be proved thatmax𝜶≥0,𝝁≥0min𝒘,𝑤0,𝝃 𝐿(𝒘, 𝑤0, 𝝃 ,𝜶,𝝁), that is,
the dual problem

max
𝜶

−12
∑

𝑖,𝑗∈[𝑛]
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗⟨𝒙𝑖 ,𝒙𝑗⟩ +

∑

𝑖∈[𝑛]
𝛼𝑖

subject to
∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 ∈ [𝑛]

is equivalent to the primal problem

min
𝒘,𝑤0,𝝃

1
2‖𝒘‖

2 + 𝐶
∑

𝑖∈{1,2,…,𝑛}
𝜉𝑖 s.t. 𝑦𝑖𝑓(𝒙𝑖) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 ∈ [𝑛]

17/47

KKT (Karush-Kuhn-Tucker) condition
• The necessary conditions for a solution to be optimal:
𝜕𝐿
𝜕𝒘

= 𝒘 −
∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖𝒙𝑖 = 0, 𝜕𝐿

𝜕𝑤0
= −

∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖 = 0, 𝜕𝐿

𝜕𝜉𝑖
= 𝐶 − 𝛼𝑖 − 𝜇𝑖 = 0

− (𝑦𝑖𝑓(𝒙𝑖) − 1 + 𝜉𝑖) ≤ 0, −𝜉𝑖 ≤ 0,
𝛼𝑖 ≥ 0, 𝜇𝑖 ≥ 0,
𝛼𝑖(𝑦𝑖𝑓(𝒙𝑖) − 1 − 𝜉𝑖) = 0, 𝜇𝑖𝜉𝑖 = 0,
𝑖 ∈ [𝑛]

18/47

Recovering Primal Variables
• Using these conditions, from the optimal 𝜶, we have
𝑓(𝒙) =

∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖⟨𝒙𝑖 ,𝒙⟩ + 𝑤0,

𝑤0 = 𝑦𝑖 −
∑

𝑗∈[𝑛]
𝛼𝑗𝑦𝑗⟨𝒙𝑗 ,𝒙𝑖⟩, ∀𝑖 ∈ {𝑖 ∈ [𝑛] ∣ 0 < 𝛼𝑖 < 𝐶}

– Since the second condition holds for all 𝑖 ∈ {𝑖 ∈ [𝑛] ∣ 0 < 𝛼𝑖 < 𝐶},
one can take the average to avoid numerical errors

19/47

Data Point Location
• 𝑦𝑖𝑓(𝒙𝑖) > 1 ⇐⇒ 𝛼𝑖 = 0: 𝒙𝑖 is outside margin

– These points do not affect to the classification hyperplane
• 𝑦𝑖𝑓(𝒙𝑖) = 1 ⇐⇒ 0 < 𝛼𝑖 < 𝐶: 𝒙𝑖 is on margin
• 𝑦𝑖𝑓(𝒙𝑖) < 1 ⇐⇒ 𝛼𝑖 = 𝐶: 𝒙𝑖 is inside margin

– These points do not exist in hard margin
• Points on margin and inside margin are support vectors

20/47

How to Solve?
• The (dual) problem:

max
𝜶

−12𝜶
𝑇𝑄𝜶 + 1𝑇𝜶 s.t. 𝒚𝑇𝜶 = 0, 0 ≤ 𝜶 ≤ 𝐶1

– 𝑄 ∈ ℝ𝑛×𝑛 is the matrix such that 𝑞𝑖𝑗 = 𝑦𝑖𝑦𝑗⟨𝒙𝑖 ,𝒙𝑗⟩

• Since analytical solution is not available, iterative approach for
continuous optimization with constraints is needed

• One of standard methods is the active set method

21/47

Active Set Method
• Divide the set [𝑛] of indices into three sets:
𝑂 = {𝑖 ∈ [𝑛] ∣ 𝛼𝑖 = 0}
𝑀 = {𝑖 ∈ [𝑛] ∣ 0 < 𝛼𝑖 < 𝐶}
𝐼 = {𝑖 ∈ [𝑛] ∣ 𝛼𝑖 = 𝐶}
– 𝑂 and 𝐼 are called active sets

• The problem can be solved w.r.t. 𝑖 ∈ 𝑀, yielding

[
𝑄𝑀 𝒚𝑀
𝒚𝑇𝑀 0] [𝛼𝑀𝜈] = −𝐶 [

𝑄𝑀,𝐼 1
1𝑇 𝒚𝐼

] + [10]

– This can be directly solved if 𝑄𝑀 is positive definite
22/47

Algorithm 1: Active Set Method
1 ACTIVESETMETHOD(𝐷)
2 Initialize𝑀, 𝐼, 𝑂
3 while there exists 𝑖 s.t. 𝑦𝑖𝑓(𝒙𝑖) < 1, 𝑖 ∈ 𝑂 or 𝑦𝑖𝑓(𝒙𝑖) > 1, 𝑖 ∈ 𝐼 do
4 Update𝑀, 𝐼, 𝑂
5 repeat
6 𝜶new

𝑀 ← the solution of the above equation
7 𝒅← 𝜶new

𝑀 − 𝜶𝑀
8 𝜶𝑀 ← 𝜶𝑀 + 𝜂𝒅 ; // max. 𝜂 satisfying 𝜶𝑀 ∈ [0, 𝐶]|𝑀|

9 Move 𝑖 ∈ 𝑀 from𝑀 to 𝐼 or 𝑂 if 𝛼𝑖 = 𝐶 or 𝛼𝑖 = 0
10 until 𝜶𝑀 = 𝜶new

𝑀 ;

23/47

Extension to Nonlinear Classification
• To achieve nonlinear classification, convert each data point 𝒙 to
some point 𝜙(𝒙), and 𝑓(𝒙) becomes
𝑓(𝒙) = ⟨𝒘, 𝜙(𝒙)⟩ + 𝑤0

• The dual problem becomes

max
𝜶

−12
∑

𝑖,𝑗∈[𝑛]
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗⟨𝜙(𝒙𝑖), 𝜙(𝒙𝑗)⟩ +

∑

𝑖∈[𝑛]
𝛼𝑖

subject to
∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 ∈ [𝑛]

– Only the dot product ⟨𝜙(𝒙𝑖), 𝜙(𝒙𝑗)⟩ is used!
– We do not even need to know 𝜙(𝒙𝑖) and 𝜙(𝒙𝑗)

24/47

C-SVM with Kernel Trick
• Use a kernel function: 𝐾(𝒙𝑖 ,𝒙𝑗) = ⟨𝜙(𝒙𝑖), 𝜙(𝒙𝑗)⟩
• We have
max
𝜶

−12
∑

𝑖,𝑗∈[𝑛]
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝒙𝑖 ,𝒙𝑗) +

∑

𝑖∈[𝑛]
𝛼𝑖

subject to
∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 ∈ [𝑛]

– The technique of using 𝐾 is called kernel trick

25/47

Kernel Regression
• From regression:

min
𝜷

𝑁∑

𝑖=1
(𝑦𝑖 − 𝒙𝑇𝑖 𝜷)

2

to kernel regression:

min
𝑁∑

𝑖=1
(𝑦𝑖 − 𝑓(𝒙𝑖))2 = min

𝜶∈ℝ𝑛

𝑁∑

𝑖=1
(𝑦𝑖 −

𝑁∑

𝑗=1
𝛼𝑗𝐾(𝒙𝑗 ,𝒙𝑖))

2

– Solved as 𝜶 = 𝐾−1𝒚
– For a new data point 𝒙′, its prediction is given as∑𝑁

𝑖=1 𝛼𝑖𝐾(𝒙𝑖 ,𝒙
′)

– (Kernel) ridge regression (by adding 𝜆‖𝜷‖22) is often used
26/47

Positive Definite Kernel
• A kernel 𝐾 ∶ Ω × Ω→ ℝ is a positive definite kernel if

(i) 𝐾(𝑥, 𝑦) = 𝐾(𝑦, 𝑥)
(ii) For 𝑥1, 𝑥2,… , 𝑥𝑛, the 𝑛 × 𝑛matrix (called Gram matrix)

(𝐾𝑖𝑗) =
⎡
⎢
⎢
⎢
⎣

𝐾(𝑥1, 𝑥1) 𝐾(𝑥2, 𝑥1) … 𝐾(𝑥𝑛, 𝑥1)
𝐾(𝑥1, 𝑥2) 𝐾(𝑥2, 𝑥2) … 𝐾(𝑥𝑛, 𝑥2)

… … … …
𝐾(𝑥1, 𝑥𝑛) 𝐾(𝑥2, 𝑥𝑛) … 𝐾(𝑥𝑛, 𝑥𝑛)

⎤
⎥
⎥
⎥
⎦

is positive semidefinite. Equivalent conditions of PSD are
◦ There exists 𝐵 s.t. (𝐾𝑖𝑗) = 𝐵𝑇𝐵
◦ 𝒄𝑇(𝐾𝑖𝑗)𝒄 ≥ 0 for any 𝒄 ∈ ℝ𝑛

◦ All eigenvalues of (𝐾𝑖𝑗) are nonnegative
27/47

Popular Positive Definite Kernels
• Linear Kernel
𝐾(𝒙,𝒚) = ⟨𝒙,𝒚⟩

• Gaussian (RBF) kernel

𝐾(𝒙,𝒚) = exp (− 1
𝜎2
‖𝒙 − 𝒚‖2)

• Polynomial Kernel
𝐾(𝒙,𝒚) = (⟨𝒙,𝒚⟩ + 𝑐)𝑐 𝑐, 𝑑 ∈ ℝ

28/47

Simple Kernels
• The all-ones kernel
𝐾(𝒙,𝒚) = 1

• The delta (Dirac) kernel

𝐾(𝒙,𝒚) = { 1 if 𝒙 = 𝒚,
0 otherwise

29/47

Closure Properties of Kernels
• For two kernels 𝐾1 and 𝐾2, 𝐾1 + 𝐾2 is a kernel
• For two kernels 𝐾1 and 𝐾2, the product 𝐾1 ⋅ 𝐾2 is a kernel
• For a kernel 𝐾 and a positive scalar 𝜆 ∈ ℝ+, 𝜆𝐾 is a kernel
• For a kernel 𝐾 on a set 𝐷, its zero-extension:

𝐾0(𝒙,𝒚) = { 𝐾(𝒙,𝒚) if 𝒙,𝒚 ∈ 𝐷,
0 otherwise

is a kernel

30/47

Kernels on Structured Data
• Given objects 𝑋 and 𝑌, decompose them into
substructures 𝑆 and 𝑇

• The R-convolution kernel 𝐾𝑅 by Haussler (1999) is given as
𝐾𝑅(𝑋,𝑌) =

∑

𝑠∈𝑆,𝑡∈𝑇
𝐾base(𝑠, 𝑡)

– 𝐾base is an arbitrary base kernel, often the delta kernel
• For example, 𝑋 is a graph and 𝑆 is the set of all subgraphs

31/47

What Is Graph?
• An object consisting of vertices (nodes) connected with edges
• A graph is directed if the edges are directed,
otherwise it is undirected

• A graph is written as 𝐺 = (𝑉, 𝐸), where 𝑉 is a vertex set and
𝐸 is an edge set

• Labels can be associated with vertices and/or edges
– If a function 𝜙 gives labels,
the label of a vertex 𝑣 ∈ 𝑉 is 𝜙(𝑣) and that of an edge 𝑒 ∈ 𝐸 is 𝜙(𝑒)

32/47

Example of Graph

1

3

24

• A graph 𝐺 = (𝑉, 𝐸, 𝜙)
– 𝑉 = {1, 2, 3, 4}
– 𝐸 = {{1, 2}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
– 𝜙(1) = green, 𝜙(2) = blue,
𝜙(3) = red, 𝜙(4) = blue

– 𝜙({{1, 2}) = zigzag, 𝜙({1, 4}) = straight,
𝜙({2, 3}) = zigzag, 𝜙({2, 4}) = straight,
𝜙({3, 4}}) = straight

33/47

Example of Graph

1

3

24

• The adjacency matrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

⎤
⎥
⎥
⎥
⎦

34/47

Similarity between Graphs

35/47

Similarity between Graphs

Similarity = 14

Similarity = 12

Similarity = 12

Graph kernel

35/47

Example

G G’

36/47

Vertex Label Histogram Kernel

2G
G’

1 1
2 0 1

KVH(G, G’) = 2·2 + 1·0 + 1·1 =5

G G’

37/47

Edge Label Histogram Kernel

G G’

3 2
1 2

G
G’

KEH(G, G’) = 3·1 + 2·2 = 7

38/47

Vertex-Edge Label Histogram Kernel

G G’

1 1 1 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 0 2 0 0 0

G
G’

KVEH(G, G’) = 3

39/47

Product Graph
• The direct product 𝐺× = (𝑉×, 𝐸×, 𝜙×) of 𝐺 and 𝐺′:
𝑉× = { (𝑣, 𝑣′) ∈ 𝑉 × 𝑉′ ∣ 𝜙(𝑣) = 𝜙′(𝑣′) },

𝐸× = { ((𝑢, 𝑢′), (𝑣, 𝑣′)) ∈ 𝑉× × 𝑉×
|||||||
(𝑢, 𝑣) ∈ 𝐸, (𝑢′, 𝑣′) ∈ 𝐸′,
𝜙(𝑢, 𝑣) = 𝜙′(𝑢′, 𝑣′) }

– All labels are inherited
1

3

24

(2,5)

(2,7)

(3,6)

(4,5)

(4,7)
5

6

7

40/47

𝑘-Step RandomWalk Kernal
• The 𝑘-step (fixed-length-𝑘) random walk kernel between 𝐺 and 𝐺′:

𝐾𝑘
×(𝐺,𝐺′) =

|𝑉×|∑

𝑖,𝑗=1

[
𝜆0𝐴0

× + 𝜆1𝐴1
× + 𝜆2𝐴2

× +⋯ + 𝜆𝑘𝐴𝑘
×

]

𝑖𝑗
(𝜆𝑙 > 0)

– 𝐴×: The adjacency matrix of the product graph
– The 𝑖𝑗 entry of 𝐴𝑛

× shows the number of paths from 𝑖 to 𝑗

41/47

Geometric RandomWalk Kernel
• 𝐾∞

× can be directly computed if 𝜆𝓁 = 𝜆𝓁 for each 𝓁 ∈ {0,… , 𝑘}
(geometric series), resulting in the geometric random walk kernel:

𝐾GR(𝐺,𝐺′) =
|𝑉×|∑

𝑖,𝑗=1

[
𝜆0𝐴0

× + 𝜆1𝐴1
× + 𝜆2𝐴2

× +⋯
]
𝑖𝑗 =

|𝑉×|∑

𝑖,𝑗=1
[
∞∑

𝓁=0
𝜆𝓁𝐴𝓁

×]
𝑖𝑗

=
|𝑉×|∑

𝑖,𝑗=1

[
(𝐈 − 𝜆𝐴×)−1

]
𝑖𝑗

– Well-defined only if 𝜆 < 1∕𝜇×,max (𝜇×,max is the max. eigenvalue of 𝐴×)
– 𝛿× (min. degree) ≤ 𝑑× (average degree) ≤ 𝜇×,max ≤ ∆× (max. degree)

42/47

Weisfeiler–Lehman Kernel

4

1 1

5 2

3 4

1 2

2 5

3

G G’

11

6 6

13 8

10 12

6 7

9 13

10

G G’

G G’

4,1135

5,234 2,35

3,245

1,4 1,4

4,1235

2,45 5,234

3,245

1,4 2,3

1,4 6
7
8
9

10
11
12
13

2,3
2,35
2,45

3,245
4,1135
4,1235
5,234

Given graphs 1st iteration

Re-labeling after 1st iteration After 1st iteration

43/47

Weisfeiler–Lehman Kernel
• The kernel value becomes:
⎡
⎢
⎢
⎣

label
𝜙(𝐺)(1)
𝜙(𝐺′)(1)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎣

1 2 3 4 5 6 7 8 9 10 11 12 13
2 1 1 1 1 2 0 1 0 1 1 0 1
1 2 1 1 1 1 1 0 1 1 0 1 1

⎤
⎥
⎦
,

𝐾1
WL(𝐺,𝐺

′) = 11

44/47

Performance Comparison

20

30

40

50

20

30

40

50

20

30

40

50

10–5 10–4 10–3 10–2

KGR

KH

A
cc

ur
ac

y

A
cc

ur
ac

y

EN
ZY

M
ES

A
cc

ur
ac

y

Parameter λ Number of steps k
KVH KEH KVEH KVEH,G KGR KWLKx

kKH

Label histogram Random walk

Comparison of KGR with KH k-step Kx
kComparison of various graph kernels(i) (ii) (iii)

1 3 5 7 9

45/47

graphkernels Package
• A package for graph kernels available in R and Python
• R:
https://CRAN.R-project.org/package=graphkernels

• Python:
https://pypi.org/project/graphkernels/

• Paper:
https://doi.org/10.1093/bioinformatics/btx602

46/47

https://CRAN.R-project.org/package=graphkernels
https://pypi.org/project/graphkernels/
https://doi.org/10.1093/bioinformatics/btx602

Summary
• SVM finds the “best” classification hyperplane

– The margin is maximized
• Although the original SVM can perform only linear classification,
it can be extended to nonlinear classification for structured data
using kernels

• Gaussian kernel + C-SVM can be the first choice for numerical data
• WL kernel can be the first choice for graph data

47/47

	Today's Outline
	Classification Problem Setting
	Classification by Hyperplane
	Learning Procedure of Perceptron
	Correctness of Perceptron
	Support Vector Machines (SVMs)
	Margin
	Formulation of SVMs
	Hard Margin SVMs
	Margin
	Soft Margin
	Soft Margin
	Data Point Location
	Dual Problem (1/4)
	Dual Problem (2/4)
	Dual Problem (3/4)
	Dual Problem (4/4)
	KKT (Karush-Kuhn-Tucker) condition
	Recovering Primal Variables
	Data Point Location
	How to Solve?
	Active Set Method
	Extension to Nonlinear Classification
	C-SVM with Kernel Trick
	Kernel Regression
	Positive Definite Kernel
	Popular Positive Definite Kernels
	Simple Kernels
	Closure Properties of Kernels
	Kernels on Structured Data
	What Is Graph?
	Example of Graph
	Example of Graph
	Similarity between Graphs
	Example
	Vertex Label Histogram Kernel
	Edge Label Histogram Kernel
	Vertex-Edge Label Histogram Kernel
	Product Graph
	k-Step Random Walk Kernal
	Geometric Random Walk Kernel
	Weisfeiler–Lehman Kernel
	Weisfeiler–Lehman Kernel
	Performance Comparison
	graphkernels Package
	Summary

