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Today’s Outline
• Today’s topic is support vector machines (SVMs) and kernel
methods

• SVM performs binary classification by maximizing the margin
– It is a popular supervised classification method

• SVM can perform nonlinear classification for structured data
using kernel trick

• Graph kernels for classification for graph structured data
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Classification Problem Setting
• Given a supervised dataset 𝐷 = {(𝒙1, 𝑦1), (𝒙2, 𝑦2),… , (𝒙𝑛, 𝑦𝑛)},
𝒙𝑖 ∈ ℝ𝑑 (feature vector), 𝑦𝑖 ∈ 𝐶 = {−1, 1} (label)

• Use a decision function (hyperplane) in the form of
𝑓(𝒙) = ⟨𝒘,𝒙⟩ + 𝑤0 =

∑𝑑
𝑗=1𝑤

𝑗𝑥𝑗 + 𝑤0

• A classifier 𝑔(𝒙) is given as

𝑔(𝒙) = { 1 if 𝑓(𝒙) > 0,
−1 if 𝑓(𝒙) < 0

• Goal: Find (𝒘, 𝑤0) that correctly classifies the dataset
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Classification by Hyperplane

F
G A hypothesis, a hyperplane

in general, is uniquely speci�ed
by a pair (w, b) 

(xi, 1)
(xj, –1) Data

f(x) = wx + b = 0
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Learning Procedure of Perceptron
1. 𝒘← 0, 𝑏 ← 0 (or a small random value) // initialization
2. for 𝑖 = 1, 2, 3,… do
3. Receive 𝑖-th pair (𝒙𝑖 , 𝑦𝑖)
4. Compute 𝑎 =∑𝑑

𝑗=1𝑤
𝑗𝑥𝑗𝑖 + 𝑏

5. if 𝑦𝑖 ⋅ 𝑎 < 0 then // 𝒙𝑖 is misclassified
6. 𝒘← 𝒘 + 𝑦𝑖𝒙𝑖 // update the weight
7. 𝑏 ← 𝑏 + 𝑦𝑖 // update the bias
8. end if
9. end for
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Correctness of Perceptron
• It is guaranteed that a perceptron always converges
to a correct classifier
– A correct classifier is a function 𝑓 s.t.

𝑓(𝒙) > 0 if 𝑦 = 1,
𝑓(𝒙) < 0 if 𝑦 = −1

– The convergence theorem
• Note: there are (infinitely) many functions
that correctly classify 𝐹 and 𝐺
– A perceptron converges to one of them
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Support Vector Machines (SVMs)
• A dataset 𝐷 is separable by 𝑓 ⇐⇒ 𝑦𝑖𝑓(𝒙𝑖) > 0, ∀𝑖 ∈ {1, 2,… , 𝑛}
• The margin is the distance from the classification hyperplane
to the closest data point

• Support vector machines (SVMs) tries to find a hyperplane that
maximizes the margin
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Margin

Margin

⟨w, x⟩ + w0 = 0
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Formulation of SVMs
• The distance from a point 𝒙𝑖 to a hyperplane
𝑓(𝒙) = ⟨𝒘,𝒙⟩ + 𝑤0 = 0 is
|𝑓(𝒙𝑖)|
‖𝒘‖

=
|||⟨𝒘,𝒙𝑖⟩ + 𝑤0

|||
‖𝒘‖

• Since 𝑦𝑖𝑓(𝒙𝑖) > 0 should be satisfied, assume that there exists
𝐵 > 0 such that 𝑦𝑖𝑓(𝒙𝑖) ≥ 𝐵 for all 𝑖 ∈ {1, 2,… , 𝑛}

• The margin maximization problem can be written as

max
𝒘,𝑤0,𝐵

𝐵
‖𝒘‖

subject to 𝑦𝑖𝑓(𝒙𝑖) ≥ 𝑀, 𝑖 ∈ {1, 2,… , 𝑛}

– 𝐵 = min𝑖∈{1,2,…,𝑛} |||⟨𝒘, 𝑥𝑖⟩ + 𝑤0
|||
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Hard Margin SVMs
• We can eliminate 𝐵 and obtain
max
𝒘,𝑤0

1
‖𝒘‖

subject to 𝑦𝑖𝑓(𝒙𝑖) ≥ 1, 𝑖 ∈ {1, 2,… , 𝑛}

• This is equivalent to
min
𝒘,𝑤0

‖𝒘‖2 subject to 𝑦𝑖𝑓(𝒙𝑖) ≥ 1, 𝑖 ∈ {1, 2,… , 𝑛}

– The standard formulation of hard margin SVMs
– There are data points 𝒙𝑖 satisfying 𝑦𝑖𝑓(𝒙𝑖) = 1, called support vectors
– The solution does not change even data points that are not support
vectors are removed
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Margin

Margin

⟨w, x⟩ + w0 = 0

Support vector
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Soft Margin
• Datasets are not often separable
• Extend SV classification to soft margin by relaxing ⟨𝒘,𝒙⟩ + 𝑤0 ≥ 1
• Change the constraint 𝑦𝑖𝑓(𝒙𝑖) ≥ 1 using the slack variable 𝜉𝑖 to
𝑦𝑖𝑓(𝒙𝑖) = 𝑦𝑖 (⟨𝒘,𝒙⟩ + 𝑤0) ≥ 1 − 𝜉𝑖 , 𝑖 ∈ {1, 2,… , 𝑛}

• The formulation of soft margin SVM (C-SVM) is

min
𝒘,𝑤0,𝝃

1
2‖𝒘‖

2 + 𝐶
∑

𝑖∈{1,2,…,𝑛}
𝜉𝑖 s.t. 𝑦𝑖𝑓(𝒙𝑖) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 ∈ {1, 2,… , 𝑛}

– 𝐶 is called the regularization parameter

11/47



Soft Margin

C is large C is small
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Data Point Location
• 𝑦𝑖𝑓(𝒙𝑖) > 1: 𝒙𝑖 is outside margin

– These points do not affect to the classification hyperplane
• 𝑦𝑖𝑓(𝒙𝑖) = 1: 𝒙𝑖 is on margin
• 𝑦𝑖𝑓(𝒙𝑖) < 1: 𝒙𝑖 is inside margin

– These points do not exist in hard margin
• Points on margin and inside margin are support vectors
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Dual Problem (1/4)
• The formulation of C-SVM
min
𝒘,𝑤0,𝝃

1
2‖𝒘‖

2 + 𝐶
∑

𝑖∈{1,2,…,𝑛}
𝜉𝑖 s.t. 𝑦𝑖𝑓(𝒙𝑖) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 ∈ {1, 2,… , 𝑛}

is called the primal problem
• This is usually solved via the dual problem
• Make the Lagrange function using 𝜶 = (𝛼1,… , 𝛼𝑛),𝝁 = (𝜇1,… , 𝜇𝑛):

𝐿(𝒘, 𝑤0, 𝝃 ,𝜶,𝝁) =
1
2‖𝒘‖

2 + 𝐶
∑

𝑖∈[𝑛]
𝜉𝑖 −

∑

𝑖∈[𝑛]
𝛼𝑖
(
𝑦𝑖𝑓(𝒙𝑖) − 1 + 𝜉𝑖

)
−
∑

𝑖∈[𝑛]
𝜇𝑖𝜉𝑖

– [𝑛] = {1, 2,… , 𝑛}
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Dual Problem (2/4)
• Let us consider
𝐷(𝜶,𝝁) = min

𝒘,𝑤0,𝝃
𝐿(𝒘, 𝑤0, 𝝃 ,𝜶,𝝁)

and its maximization
max

𝜶≥0,𝝁≥0
𝐷(𝜶,𝝁) = max

𝜶≥0,𝝁≥0
min
𝒘,𝑤0,𝝃

𝐿(𝒘, 𝑤0, 𝝃 ,𝜶,𝝁)

• The inside minimization is achieved when
𝜕𝐿
𝜕𝒘

= 𝒘 −
∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖𝒙𝑖 = 0, 𝜕𝐿

𝜕𝑤0
= −

∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖 = 0, 𝜕𝐿

𝜕𝜉𝑖
= 𝐶 − 𝛼𝑖 − 𝜇𝑖 = 0
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Dual Problem (3/4)
• Putting the three conditions to the Lagrange function
to remove 𝒘, 𝑤0, and 𝝃 , yielding

𝐿 = 1
2‖𝒘‖

2 + 𝐶
∑

𝑖∈[𝑛]
𝜉𝑖 −

∑

𝑖∈[𝑛]
𝛼𝑖
(
𝑦𝑖𝑓(𝒙𝑖) − 1 + 𝜉𝑖

)
−
∑

𝑖∈[𝑛]
𝜇𝑖𝜉𝑖

= 1
2‖𝒘‖

2 −
∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖⟨𝒘,𝒙𝑖⟩ − 𝑤0

∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖 +

∑

𝑖∈[𝑛]
𝛼𝑖 +

∑

𝑖∈[𝑛]
(𝐶 − 𝛼𝑖 − 𝜇𝑖)𝜉𝑖

= −12
∑

𝑖,𝑗∈[𝑛]
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗⟨𝒙𝑖 ,𝒙𝑗⟩ +

∑

𝑖∈[𝑛]
𝛼𝑖

16/47



Dual Problem (4/4)
• It can be proved thatmax𝜶≥0,𝝁≥0min𝒘,𝑤0,𝝃 𝐿(𝒘, 𝑤0, 𝝃 ,𝜶,𝝁), that is,
the dual problem

max
𝜶

−12
∑

𝑖,𝑗∈[𝑛]
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗⟨𝒙𝑖 ,𝒙𝑗⟩ +

∑

𝑖∈[𝑛]
𝛼𝑖

subject to
∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 ∈ [𝑛]

is equivalent to the primal problem

min
𝒘,𝑤0,𝝃

1
2‖𝒘‖

2 + 𝐶
∑

𝑖∈{1,2,…,𝑛}
𝜉𝑖 s.t. 𝑦𝑖𝑓(𝒙𝑖) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 ∈ [𝑛]
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KKT (Karush-Kuhn-Tucker) condition
• The necessary conditions for a solution to be optimal:
𝜕𝐿
𝜕𝒘

= 𝒘 −
∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖𝒙𝑖 = 0, 𝜕𝐿

𝜕𝑤0
= −

∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖 = 0, 𝜕𝐿

𝜕𝜉𝑖
= 𝐶 − 𝛼𝑖 − 𝜇𝑖 = 0

− (𝑦𝑖𝑓(𝒙𝑖) − 1 + 𝜉𝑖) ≤ 0, −𝜉𝑖 ≤ 0,
𝛼𝑖 ≥ 0, 𝜇𝑖 ≥ 0,
𝛼𝑖(𝑦𝑖𝑓(𝒙𝑖) − 1 − 𝜉𝑖) = 0, 𝜇𝑖𝜉𝑖 = 0,
𝑖 ∈ [𝑛]
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Recovering Primal Variables
• Using these conditions, from the optimal 𝜶, we have
𝑓(𝒙) =

∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖⟨𝒙𝑖 ,𝒙⟩ + 𝑤0,

𝑤0 = 𝑦𝑖 −
∑

𝑗∈[𝑛]
𝛼𝑗𝑦𝑗⟨𝒙𝑗 ,𝒙𝑖⟩, ∀𝑖 ∈ {𝑖 ∈ [𝑛] ∣ 0 < 𝛼𝑖 < 𝐶}

– Since the second condition holds for all 𝑖 ∈ {𝑖 ∈ [𝑛] ∣ 0 < 𝛼𝑖 < 𝐶},
one can take the average to avoid numerical errors
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Data Point Location
• 𝑦𝑖𝑓(𝒙𝑖) > 1 ⇐⇒ 𝛼𝑖 = 0: 𝒙𝑖 is outside margin

– These points do not affect to the classification hyperplane
• 𝑦𝑖𝑓(𝒙𝑖) = 1 ⇐⇒ 0 < 𝛼𝑖 < 𝐶: 𝒙𝑖 is on margin
• 𝑦𝑖𝑓(𝒙𝑖) < 1 ⇐⇒ 𝛼𝑖 = 𝐶: 𝒙𝑖 is inside margin

– These points do not exist in hard margin
• Points on margin and inside margin are support vectors
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How to Solve?
• The (dual) problem:

max
𝜶

−12𝜶
𝑇𝑄𝜶 + 1𝑇𝜶 s.t. 𝒚𝑇𝜶 = 0, 0 ≤ 𝜶 ≤ 𝐶1

– 𝑄 ∈ ℝ𝑛×𝑛 is the matrix such that 𝑞𝑖𝑗 = 𝑦𝑖𝑦𝑗⟨𝒙𝑖 ,𝒙𝑗⟩

• Since analytical solution is not available, iterative approach for
continuous optimization with constraints is needed

• One of standard methods is the active set method
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Active Set Method
• Divide the set [𝑛] of indices into three sets:
𝑂 = {𝑖 ∈ [𝑛] ∣ 𝛼𝑖 = 0}
𝑀 = {𝑖 ∈ [𝑛] ∣ 0 < 𝛼𝑖 < 𝐶}
𝐼 = {𝑖 ∈ [𝑛] ∣ 𝛼𝑖 = 𝐶}
– 𝑂 and 𝐼 are called active sets

• The problem can be solved w.r.t. 𝑖 ∈ 𝑀, yielding

[
𝑄𝑀 𝒚𝑀
𝒚𝑇𝑀 0 ] [𝛼𝑀𝜈 ] = −𝐶 [

𝑄𝑀,𝐼 1
1𝑇 𝒚𝐼

] + [10]

– This can be directly solved if 𝑄𝑀 is positive definite
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Algorithm 1: Active Set Method
1 ACTIVESETMETHOD(𝐷)
2 Initialize𝑀, 𝐼, 𝑂
3 while there exists 𝑖 s.t. 𝑦𝑖𝑓(𝒙𝑖) < 1, 𝑖 ∈ 𝑂 or 𝑦𝑖𝑓(𝒙𝑖) > 1, 𝑖 ∈ 𝐼 do
4 Update𝑀, 𝐼, 𝑂
5 repeat
6 𝜶new

𝑀 ← the solution of the above equation
7 𝒅← 𝜶new

𝑀 − 𝜶𝑀
8 𝜶𝑀 ← 𝜶𝑀 + 𝜂𝒅 ; // max. 𝜂 satisfying 𝜶𝑀 ∈ [0, 𝐶]|𝑀|

9 Move 𝑖 ∈ 𝑀 from𝑀 to 𝐼 or 𝑂 if 𝛼𝑖 = 𝐶 or 𝛼𝑖 = 0
10 until 𝜶𝑀 = 𝜶new

𝑀 ;
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Extension to Nonlinear Classification
• To achieve nonlinear classification, convert each data point 𝒙 to
some point 𝜙(𝒙), and 𝑓(𝒙) becomes
𝑓(𝒙) = ⟨𝒘, 𝜙(𝒙)⟩ + 𝑤0

• The dual problem becomes

max
𝜶

−12
∑

𝑖,𝑗∈[𝑛]
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗⟨𝜙(𝒙𝑖), 𝜙(𝒙𝑗)⟩ +

∑

𝑖∈[𝑛]
𝛼𝑖

subject to
∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 ∈ [𝑛]

– Only the dot product ⟨𝜙(𝒙𝑖), 𝜙(𝒙𝑗)⟩ is used!
– We do not even need to know 𝜙(𝒙𝑖) and 𝜙(𝒙𝑗)
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C-SVM with Kernel Trick
• Use a kernel function: 𝐾(𝒙𝑖 ,𝒙𝑗) = ⟨𝜙(𝒙𝑖), 𝜙(𝒙𝑗)⟩
• We have
max
𝜶

−12
∑

𝑖,𝑗∈[𝑛]
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝒙𝑖 ,𝒙𝑗) +

∑

𝑖∈[𝑛]
𝛼𝑖

subject to
∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 ∈ [𝑛]

– The technique of using 𝐾 is called kernel trick
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Kernel Regression
• From regression:

min
𝜷

𝑁∑

𝑖=1
(𝑦𝑖 − 𝒙𝑇𝑖 𝜷)

2

to kernel regression:

min
𝑁∑

𝑖=1
(𝑦𝑖 − 𝑓(𝒙𝑖))2 = min

𝜶∈ℝ𝑛

𝑁∑

𝑖=1
(𝑦𝑖 −

𝑁∑

𝑗=1
𝛼𝑗𝐾(𝒙𝑗 ,𝒙𝑖))

2

– Solved as 𝜶 = 𝐾−1𝒚
– For a new data point 𝒙′, its prediction is given as∑𝑁

𝑖=1 𝛼𝑖𝐾(𝒙𝑖 ,𝒙
′)

– (Kernel) ridge regression (by adding 𝜆‖𝜷‖22) is often used
26/47



Positive Definite Kernel
• A kernel 𝐾 ∶ Ω × Ω→ ℝ is a positive definite kernel if

(i) 𝐾(𝑥, 𝑦) = 𝐾(𝑦, 𝑥)
(ii) For 𝑥1, 𝑥2,… , 𝑥𝑛, the 𝑛 × 𝑛matrix (called Gram matrix)

(𝐾𝑖𝑗) =
⎡
⎢
⎢
⎢
⎣

𝐾(𝑥1, 𝑥1) 𝐾(𝑥2, 𝑥1) … 𝐾(𝑥𝑛, 𝑥1)
𝐾(𝑥1, 𝑥2) 𝐾(𝑥2, 𝑥2) … 𝐾(𝑥𝑛, 𝑥2)

… … … …
𝐾(𝑥1, 𝑥𝑛) 𝐾(𝑥2, 𝑥𝑛) … 𝐾(𝑥𝑛, 𝑥𝑛)

⎤
⎥
⎥
⎥
⎦

is positive semidefinite. Equivalent conditions of PSD are
◦ There exists 𝐵 s.t. (𝐾𝑖𝑗) = 𝐵𝑇𝐵
◦ 𝒄𝑇(𝐾𝑖𝑗)𝒄 ≥ 0 for any 𝒄 ∈ ℝ𝑛

◦ All eigenvalues of (𝐾𝑖𝑗) are nonnegative
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Popular Positive Definite Kernels
• Linear Kernel
𝐾(𝒙,𝒚) = ⟨𝒙,𝒚⟩

• Gaussian (RBF) kernel

𝐾(𝒙,𝒚) = exp (− 1
𝜎2
‖𝒙 − 𝒚‖2)

• Polynomial Kernel
𝐾(𝒙,𝒚) = (⟨𝒙,𝒚⟩ + 𝑐)𝑐 𝑐, 𝑑 ∈ ℝ
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Simple Kernels
• The all-ones kernel
𝐾(𝒙,𝒚) = 1

• The delta (Dirac) kernel

𝐾(𝒙,𝒚) = { 1 if 𝒙 = 𝒚,
0 otherwise
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Closure Properties of Kernels
• For two kernels 𝐾1 and 𝐾2, 𝐾1 + 𝐾2 is a kernel
• For two kernels 𝐾1 and 𝐾2, the product 𝐾1 ⋅ 𝐾2 is a kernel
• For a kernel 𝐾 and a positive scalar 𝜆 ∈ ℝ+, 𝜆𝐾 is a kernel
• For a kernel 𝐾 on a set 𝐷, its zero-extension:

𝐾0(𝒙,𝒚) = { 𝐾(𝒙,𝒚) if 𝒙,𝒚 ∈ 𝐷,
0 otherwise

is a kernel
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Kernels on Structured Data
• Given objects 𝑋 and 𝑌, decompose them into
substructures 𝑆 and 𝑇

• The R-convolution kernel 𝐾𝑅 by Haussler (1999) is given as
𝐾𝑅(𝑋,𝑌) =

∑

𝑠∈𝑆,𝑡∈𝑇
𝐾base(𝑠, 𝑡)

– 𝐾base is an arbitrary base kernel, often the delta kernel
• For example, 𝑋 is a graph and 𝑆 is the set of all subgraphs
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What Is Graph?
• An object consisting of vertices (nodes) connected with edges
• A graph is directed if the edges are directed,
otherwise it is undirected

• A graph is written as 𝐺 = (𝑉, 𝐸), where 𝑉 is a vertex set and
𝐸 is an edge set

• Labels can be associated with vertices and/or edges
– If a function 𝜙 gives labels,
the label of a vertex 𝑣 ∈ 𝑉 is 𝜙(𝑣) and that of an edge 𝑒 ∈ 𝐸 is 𝜙(𝑒)
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Example of Graph

1

3

24

• A graph 𝐺 = (𝑉, 𝐸, 𝜙)
– 𝑉 = {1, 2, 3, 4}
– 𝐸 = {{1, 2}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
– 𝜙(1) = green, 𝜙(2) = blue,
𝜙(3) = red, 𝜙(4) = blue

– 𝜙({{1, 2}) = zigzag, 𝜙({1, 4}) = straight,
𝜙({2, 3}) = zigzag, 𝜙({2, 4}) = straight,
𝜙({3, 4}}) = straight
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Example of Graph

1

3

24

• The adjacency matrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

⎤
⎥
⎥
⎥
⎦
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Similarity between Graphs
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Similarity between Graphs

Similarity = 14

Similarity = 12

Similarity = 12

Graph kernel
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Example

G G’
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Vertex Label Histogram Kernel

2G
G’

1 1
2 0 1

KVH(G, G’ ) = 2·2 + 1·0 + 1·1 =5

G G’
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Edge Label Histogram Kernel

G G’

3 2
1 2

G
G’

KEH(G, G’ ) = 3·1 + 2·2 = 7
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Vertex-Edge Label Histogram Kernel

G G’

1 1 1 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 0 2 0 0 0

G
G’

KVEH(G, G’ ) = 3
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Product Graph
• The direct product 𝐺× = (𝑉×, 𝐸×, 𝜙×) of 𝐺 and 𝐺′:
𝑉× = { (𝑣, 𝑣′) ∈ 𝑉 × 𝑉′ ∣ 𝜙(𝑣) = 𝜙′(𝑣′) },

𝐸× = { ((𝑢, 𝑢′), (𝑣, 𝑣′)) ∈ 𝑉× × 𝑉×
|||||||
(𝑢, 𝑣) ∈ 𝐸, (𝑢′, 𝑣′) ∈ 𝐸′,
𝜙(𝑢, 𝑣) = 𝜙′(𝑢′, 𝑣′) }

– All labels are inherited
1

3

24

(2,5)

(2,7)

(3,6)

(4,5)

(4,7)
5

6

7
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𝑘-Step RandomWalk Kernal
• The 𝑘-step (fixed-length-𝑘) random walk kernel between 𝐺 and 𝐺′:

𝐾𝑘
×(𝐺,𝐺′) =

|𝑉×|∑

𝑖,𝑗=1

[
𝜆0𝐴0

× + 𝜆1𝐴1
× + 𝜆2𝐴2

× +⋯ + 𝜆𝑘𝐴𝑘
×

]

𝑖𝑗
(𝜆𝑙 > 0)

– 𝐴×: The adjacency matrix of the product graph
– The 𝑖𝑗 entry of 𝐴𝑛

× shows the number of paths from 𝑖 to 𝑗
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Geometric RandomWalk Kernel
• 𝐾∞

× can be directly computed if 𝜆𝓁 = 𝜆𝓁 for each 𝓁 ∈ {0,… , 𝑘}
(geometric series), resulting in the geometric random walk kernel:

𝐾GR(𝐺,𝐺′) =
|𝑉×|∑

𝑖,𝑗=1

[
𝜆0𝐴0

× + 𝜆1𝐴1
× + 𝜆2𝐴2

× +⋯
]
𝑖𝑗 =

|𝑉×|∑

𝑖,𝑗=1
[
∞∑

𝓁=0
𝜆𝓁𝐴𝓁

×]
𝑖𝑗

=
|𝑉×|∑

𝑖,𝑗=1

[
(𝐈 − 𝜆𝐴×)−1

]
𝑖𝑗

– Well-defined only if 𝜆 < 1∕𝜇×,max (𝜇×,max is the max. eigenvalue of 𝐴×)
– 𝛿× (min. degree) ≤ 𝑑× (average degree) ≤ 𝜇×,max ≤ ∆× (max. degree)
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Weisfeiler–Lehman Kernel

4

1 1

5 2

3 4

1 2

2 5

3

G G’

11

6 6

13 8

10 12

6 7

9 13

10

G G’

G G’

4,1135

5,234 2,35

3,245

1,4 1,4

4,1235

2,45 5,234

3,245

1,4 2,3

1,4 6
7
8
9

10
11
12
13

2,3
2,35
2,45

3,245
4,1135
4,1235
5,234

Given graphs 1st iteration

Re-labeling after 1st iteration After 1st iteration
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Weisfeiler–Lehman Kernel
• The kernel value becomes:
⎡
⎢
⎢
⎣

label
𝜙(𝐺)(1)
𝜙(𝐺′)(1)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎣

1 2 3 4 5 6 7 8 9 10 11 12 13
2 1 1 1 1 2 0 1 0 1 1 0 1
1 2 1 1 1 1 1 0 1 1 0 1 1

⎤
⎥
⎦
,

𝐾1
WL(𝐺,𝐺

′) = 11
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Performance Comparison
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graphkernels Package
• A package for graph kernels available in R and Python
• R:
https://CRAN.R-project.org/package=graphkernels

• Python:
https://pypi.org/project/graphkernels/

• Paper:
https://doi.org/10.1093/bioinformatics/btx602
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Summary
• SVM finds the “best” classification hyperplane

– The margin is maximized
• Although the original SVM can perform only linear classification,
it can be extended to nonlinear classification for structured data
using kernels

• Gaussian kernel + C-SVM can be the first choice for numerical data
• WL kernel can be the first choice for graph data
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