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Today’s Outline

 Today'’s topic is (SVMs) and

+ SVM performs binary classification by maximizing the margin
- Itis a popular supervised classification method

* SVM can perform classification for
using

. for classification for graph structured data
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Classification Problem Setting

« Given a dataset D = {(x1,y1), (X5, ¥3), ..., (X,,, Y, )},
x; € RY (feature vector), y; € C = {—1, 1} (label)
« Use a ( ) in the form of

f(x) ={(w,x) +wy = Z;i:l w/x) + wy
* A classifier g(x) is given as

B 1 if f(x) >0,
8X) =) _1 if () <0

 Goal: Find (w, wy) that correctly classifies the dataset
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Classification by Hyperplane

fX)=wx+b=0

~— A hypothesis, a hyperplane
in general, is uniquely specified
by a pair (w, b)

= (Xil 1)
T~ (x;, -1) Data
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Learning Procedure of Perceptron

1. w« 0, b « 0 (or asmall random value) // initialization
2. fori=1,2,3,... do
3.  Receivei-th pair (x;, y;)

4.,  Computea = Z;i:l wfxl.j +b

5. ify;-a<0then /] x; is misclassified
6. w < w+ y;X; // update the weight
7 b<b+y; // update the bias
8. endif

9. end for
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Correctness of Perceptron

* Itis guaranteed that a perceptron always converges
to a correct classifier

- A correct classifier is a function f s.t.
f(x)>0ify =1,
f(x)<0ify=-1

* Note: there are (infinitely) many functions
that correctly classify F and G

- A perceptron converges to one of them
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Support Vector Machines (SVMs)

« Adataset D is by f < y;f(x;)>0,Vie{l,2,..,n}

* The is the distance from the classification hyperplane
to the closest data point

* Support vector machines (SVMs) tries to find a hyperplane that
the margin

6/47



Margin

(W, X)+wy=0
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Formulation of SVMs

 The distance from a point x; to a hyperplane
f(x)=(w,x)+wy=0Iis
[f Ol [(w, x;) + wy
|wl| [|wl|

* Since y; f(x;) > 0 should be satisfied, assume that there exists
B > 0suchthaty,f(x;) >Bforalli e {1,2,...,n}

* The margin maximization problem can be written as

B .
max —— Subjecttoy;f(x;) > M,i € {1,2,...,n}
waios ]

,,,,,,
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Hard Margin SVMs

« We can eliminate B and obtain

1 .
max —— subjectto y;f(x;) > 1,i €{1,2,...,n}
wwy [|wl|

* This is equivalent to
min [|[w||> subjecttoy;f(x;) >1,i €{1,2,...,n}

w,Wg
- The standard formulation of

- There are data points x; satisfying y, f(x;) = 1, called

- The solution does not change even data points that are not support
vectors are removed
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Margin

(W, X)+wy=0
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Soft Margin

- Datasets are not often separable

» Extend SV classification to by relaxing (w, x) + wy > 1

* Change the constraint y; f(x;) > 1 using the ¢ to
Yif (%) =y ((w,x) +wp) 21-5;, i€{l,2,..,n}

* The formulation of (C-SVM) is

min —||U)||2 + Cz gl S.t. ylf(xl) > 1 — gi’gi > O,l e {1,2, ,l’l}

w.wo £ 2 i€{1,2,...,n}

- Cis called the
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Soft Margin

Cis large Cis small
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Data Point Location

* ¥;f(x;) > 1: x; is outside margin

- These points do not affect to the classification hyperplane
* y;f(x;) = 1. x; ison margin
* y;f(x;) < 1: x; is inside margin

- These points do not exist in hard margin

* Points on margin and inside margin are support vectors
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Dual Problem (1/4)

* The formulation of C-SVM

min §||w||2+CZ§l s.t.y, f(x)>1—&,€>0,i€{l,2,..,n}
W, Wo.§ i€{1,2,...,n}

is called the
* This is usually solved via the

* Make the using a = (g, .., &)y b = (Uqy oo s M)
L(w, wo, &, &, pt) = —||w||2 +CY & =D a(nif ) — 1+ &) = D) ik
ie[n] ie[n] i€[n]

- [n] =1{1,2,...,n}
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Dual Problem (2/4)

« Let us consider
D(et,u) = min L(w,wy, &, a, 1)

waw()’
and its maximization

max D(ea,u) = max min L(w,wy, €&, «,
o0 100 (ex, ) >0 a0 W ( 05 &> 0, 1)

* The inside minimization is achleved when

oL
%=w—iez[;l]aiyl'xi_0 —=—zaz)’z_0 6_§-’1_C a; — p; =0

15/47



Dual Problem (3/4)

» Putting the three conditions to the Lagrange function
to remove w, wy, and ¢, yielding

L——||w||2+CZ§l 2 a(ife) = 1+&) =D wié

ie[n] ie[n] i€[n]
= —||w||2 Zoclyl(w X;)— wozcxlyl +Zal +Z(C a; — )8
] ieln] i€l ieln]

=——Za06]ylyj<xu >+Z(xl

l]E nj i€[n]
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Dual Problem (4/4)

* It can be proved that maxysg >0 ming, ,, ¢ L(w, wy, £, a, u), that is,
the

moilX——ZOCl ]yly]<x19 ]>+Zal
l]E[ | i€[n]

subjectto Y a;y;=0,0<; <C, i €[n]

ie[n]
IS equivalent to the

min §||w||2 + Cz §i Styif(x)=>21-¢&,620,i¢€[n]
w,Wo.§ i€{1,2,...,n}
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KKT (Karush-Kuhn-Tucker) condition

* The necessary conditions for a solution to be optimal:

oL oL

a_w=w_,zaiyixl_0 _=_2alyl_0 E_C a;—u; =0
ie[n] L

- ifx)—-1+&)<0, =§ <0,

i > O Mi > 0

o (yif(x;) — gl) =0, lulgl =0,
i€ [n]
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Recovering Primal Variables

* Using these conditions, from the optimal «, we have

fx) = Z a;yi{Xi, X) + Wy,
ie[n]
Wy =Y; — Zcxjyj(xj,xi), Vie{ie[n]|0<a <C}
J€EIn]
- Since the second condition holds foralli € {i € [n] | 0 < a; < C},
one can take the average to avoid numerical errors

19/47



Data Point Location

* yif(x;) >1 < a; = 0: x; is outside margin

- These points do not affect to the classification hyperplane
* yif(x))=1 & 0<a <C:x;isonmargin
* yif(x) <1 & a; = C: x;isinside margin

- These points do not exist in hard margin

* Points on margin and inside margin are support vectors
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How to Solve?

* The (dual) problem:

1
max—iocTch +17a st yla=00<a<C1
(04

- Q € R™ is the matrix such that g;; = y,y;(x;, x;)

* Since analytical solution is not available, iterative approach for
continuous optimization with constraints is needed

* One of standard methods is the
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Active Set Method

* Divide the set [n] of indices into three sets:
O={i€|n]|a =0}
M={ie[n]|0<a <C}
I ={ie|n]|a =C}
- O and T are called

* The problem can be solved w.rt. i € M, yielding

QM Yy M Q% v 1 1
y}d 0 1 Y 0

- This can be directly solved if Q,, is positive definite

Anm
Y

=—C +
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Algorithm 1: Active Set Method

ACTIVESETMETHOD(D)

Initialize M, I, O
while there existsis.t. y;f(x;) < 1, i€ Oory;f(x;)>1,ieldo

Update M, I, O

repeat

oy < the solution of the above equation

new
de—oa, —ay

ay < ay +nd; // max. 7 satisfying a;; € [0,C]M
Moveie MfromMtoIorOifa;=Cora; =0

H — ~New.
until o, = o} "
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Extension to Nonlinear Classification

* To achieve nonlinear classification, convert each data point x to
some point ¢(x), and f(x) becomes

f(x) = (w, $(x)) + wy
* The dual problem becomes

max — 3 cqat vy (B0, ) + 2

1,j€[n] i€[n]
subjectto Y oy, =0, 0 <a; < C,i € [n]
ie[n]
- Only the dot product (¢(x;), ¢(x;)) is used!

- We do not even need to know ¢(x;) and ¢(x;)
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C-SVM with Kernel Trick

- Use a P K(xp,x5) = ($(x;), p(x))
« We have
1
max —5 Z OCiOijiyjK(xia x]) + Z o4
(04 . .
1,j€ln] i€[n]

subject to Z a;y; =0, 0<qa; <C,i €|n]
ie[n]
- The technique of using K is called
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Kernel Regression

* From regression:
N

mﬁin > i —xIB)?
=1

to

N 2

N N
min Y - f(x)? = min >(v X« Ky, x0)
=1 axeR = i=1
- Solvedasa =K'y
- For a new data point x’, its prediction is given as ZL o; K(x;,x")

- (by adding 2]|8|[3) is often used
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Positive Definite Kernel

« AkernelK : OxQ - Risa if
(i) K(x,y) =K(y,x)
(ii) For x, x,, ..., x,, the n X n matrix (called )
_K(xl’xl) K(x;,x1) .. K(xn’xl)_
(Kij) _ K(xy,x,) K(xy,x) ... K(x,,x,)
KCex) KGx) o Ko x,)

is positive semidefinite. Equivalent conditions of PSD are
o There exists B s.t. (K;;) = B'B
o c'(K;j)e >0foranyceR"
o All eigenvalues of (K;;) are nonnegative
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Popular Positive Definite Kernels

* Linear Kernel
K(x,y)=(x,y)
« Gaussian (RBF) kernel

1
K(x,y) = exp (= lx - yiP)

* Polynomial Kernel
Kx,y)=({x,y)+c) c,deR

28/47



Simple Kernels

* The all-ones kernel
K(x,y) =1
* The delta (Dirac) kernel

1 ifx=y,

K®* ¥ =10 otherwise
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Closure Properties of Kernels

* For two kernels K; and K,, K; + K, is a kernel

* For two kernels K; and K,, the product K; - K, is a kernel
 For a kernel K and a positive scalar A € R*, AK is a kernel
* For a kernel K on a set D, its zero-extension:

_ ) K(x,y) ifx,yeD,
Ko(x, y) = 0 otherwise

is a kernel
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Kernels on Structured Data

* Given objects X and Y, them into
substructures Sand T
* The Ky by Haussler (1999) is given as
Kr(X,Y) = Z Kpase(s, t)
seS,teT

- Kpase IS @n arbitrary base kernel, often the delta kernel

* For example, X is a graph and S is the set of all subgraphs
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What Is Graph?

* An object consisting of (nodes) connected with

» Agraphis if the edges are directed,
otherwise it is

» A graphis written as G = (V, E), where V is a vertex set and
E is an edge set

. can be associated with vertices and/or edges

- If a function ¢ gives labels,
the label of a vertex v € V is ¢(v) and that of an edge e € E is ¢(e)
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Example of Graph

1 * Agraph G = (V,E, ¢)
-V =4{12,734;
4 p) - E={{1,2},{1,4},{2,3},{2,4},{3,4}}
- ¢(1) = green, ¢(2) = blue,
$(3) = red, $(4) = blue
- ¢({{1,2}) = zigzag, $({1,4}) = straight,

3 $(12,3)) = zigzag, $({2, 4}) = straight,
¢({3,4}}) = straight
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Example of Graph

1 * The adjacency matrix
01 0 1
1 0 1 1
4 2 A= 0O 1 0 1
1 1 1 O
3
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Similarity between Graphs

7
M
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Similarity between Graphs

Similarity = 14 Graph kernel
. N
. i Similarity = 12
AN '
A 'I

N,

Similarity =12 e
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Example
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Vertex Label Histogram Kernel

G G’

00
2 1 1 ,

Kyu(G,G')=22+10+1-1=
5 0 1 vH( ) 0 5

G
G/
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Edge Label Histogram Kernel

G G’

G 3 2 2 o
G 1 2 KEH(G,G)—31+22 /
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Vertex-Edge Label Histogram Kernel

G G’
00060600000 06100100 00001000

G1 1 1 0 o0 O o0 1 1 0 o0 o0 ,
Kyen(G, G') = 3
G1 0 O O O O o0 O 2 0 o0 o0 ven(G, G)
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Product Graph

* The direct product Gy = (V, Ey, ¢y) of G and G’:
Ve ={(@, ") e VXV | ¢(v) =¢'(L")},
(u,v) € E, (W',v") e E,

By =1 (@ u), (0,00) € Vi X Vi | 40, 0y = o’ ')

- All labels are inherited

1 (2,5) (4,7)
5
4 2 7 _
X Q;\r'“”‘ o (3,6)
3 6 (2,7)
(4,5)



k-Step Random Walk Kernal

* The (fixed-length-k) between G and G’:
Vx|
KXG,G) = ), [AOAQ + AL + A2 + -+ AkAﬁ]“ (4, > 0)
i,j=1 g

- A, The adjacency matrix of the product graph
- Theij entry of AZ shows the number of paths from i to j
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Geometric Random Walk Kernel

* K2 can be directly computed if 1, = A? for each ¢ € {0, ..., k}
( ), resulting in the
Vx| |V><
Kor(G,G") = ), [204% + A1AL + 2242 + - [Z AfAf’
i,j=1 i,j=1

Vx|

= Y [@-24,)" ]

I,j=1
- Well-defined only if (4 max IS the max. eigenvalue of A, )
- 0, (min. degree) < d_>< (average degree) < < A, (max. degree)
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Weisfeiler-Lehman Kernel

Given graphs 1st iteration
(5,234 2,35 245 X75,234
@@ ﬂ@b@
/ C14 314 D¢ 14323 D¢
Re-labeling after 1st iteration After 1st iteration
14 —»6 3245 —» 10 (13—(8) (9)—13)
23 7 41135 > 11 \ ,
23538  4,1235 = 12 1 10 12 10
245—>»9 5234 —» 13
©® © ¢ © @ ¢
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Weisfeiler-Lehman Kernel

. T_he kerne_l value becomes:

label 1 23 456 7 8 9 10 11 12 13
GV 1=21 11120101 1 0 1],
$(GHD 1T 2111110 1 0 1 1

1 ) —
K} (G,G") =11

44/47



Performance Comparison

ENZYMES

Accuracy

50 -

N
o
1

W
o
1

N
o
1

(i) Comparison of various graph kernels (i)

==

O ]

IKVH KEH KVEHKH KVEHI,GI KGR K)ﬁ( I KWL

Label histogram Random walk

Comparison of Kgg with Ky

11 —O—Kagr
507 | /Ky
.
© 40
>
S -
< 301 A
20_I T T T T
107 107 1073 1072
Parameter A

(iii) k-step KX
50+ m Q) @ m
- N
© 40
>
3 -
< 30-
204

1 3 5 7 9
Number of steps k
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graphkernels Package

A package for graph kernels available in R and Python

* R
https://CRAN.R-project.org/package=graphkernels

* Python:
https://pypl.org/project/graphkernels/

* Paper:
https://doi.org/10.1093/bioinformatics/btx602
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https://CRAN.R-project.org/package=graphkernels
https://pypi.org/project/graphkernels/
https://doi.org/10.1093/bioinformatics/btx602

Summary

* SVM finds the “best” classification hyperplane
- The is maximized

* Although the original SVM can perform only linear classification,
it can be extended to nonlinear classification for structured data
using
« Gaussian kernel + C-SVM can be the first choice for numerical data
« WL kernel can be the first choice for graph data
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