SVM and Kernel Methods

Data Mining 10 （データマイニング）

Mahito Sugiyama（杉山麿人）

Today's Outline

- Today's topic is support vector machines (SVMs) and kernel methods
- SVM performs binary classification by maximizing the margin
- It is a popular supervised classification method
- SVM can perform nonlinear classification for structured data using kernel trick
- Graph kernels for classification for graph structured data

Classification Problem Setting

- Given a supervised dataset $D=\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right)\right\}$, $\boldsymbol{x}_{i} \in \mathbb{R}^{d}$ (feature vector), $y_{i} \in C=\{-1,1\}$ (label)
- Use a decision function (hyperplane) in the form of

$$
f(\boldsymbol{x})=\langle\boldsymbol{w}, \boldsymbol{x}\rangle+w_{0}=\sum_{j=1}^{d} w^{j} x^{j}+w_{0}
$$

- A classifier $g(\boldsymbol{x})$ is given as

$$
g(\boldsymbol{x})=\left\{\begin{aligned}
1 & \text { if } f(\boldsymbol{x})>0 \\
-1 & \text { if } f(\boldsymbol{x})<0
\end{aligned}\right.
$$

- Goal: Find (\boldsymbol{w}, w_{0}) that correctly classifies the dataset

Classification by Hyperplane

Learning Procedure of Perceptron

1. $\boldsymbol{w} \leftarrow 0, b \leftarrow 0$ (or a small random value)
// initialization
2. for $i=1,2,3, \ldots$ do
3. Receive i-th pair $\left(\boldsymbol{x}_{i}, y_{i}\right)$
4. Compute $a=\sum_{j=1}^{d} w^{j} x_{i}^{j}+b$
5. if $y_{i} \cdot a<0$ then
6. $\boldsymbol{\omega} \leftarrow \boldsymbol{w}+y_{i} \boldsymbol{x}_{i}$
7. $\quad b \leftarrow b+y_{i}$
$/ / \boldsymbol{x}_{i}$ is misclassified
// update the weight
8. end if
9. end for

Correctness of Perceptron

- It is guaranteed that a perceptron always converges to a correct classifier
- A correct classifier is a function f s.t.
$f(x)>0$ if $y=1$, $f(\boldsymbol{x})<0$ if $y=-1$
- The convergence theorem
- Note: there are (infinitely) many functions that correctly classify F and G
- A perceptron converges to one of them

Support Vector Machines (SVMs)

- A dataset D is separable by $f \Longleftrightarrow y_{i} f\left(\boldsymbol{x}_{i}\right)>0, \forall i \in\{1,2, \ldots, n\}$
- The margin is the distance from the classification hyperplane to the closest data point
- Support vector machines (SVMs) tries to find a hyperplane that maximizes the margin

Margin

Formulation of SVMs

- The distance from a point \boldsymbol{x}_{i} to a hyperplane

$$
\begin{aligned}
& f(\boldsymbol{x})=\langle\boldsymbol{w}, \boldsymbol{x}\rangle+w_{0}=0 \text { is } \\
& \frac{\left|f\left(\boldsymbol{x}_{i}\right)\right|}{\|\boldsymbol{w}\|}=\frac{\left|\left\langle\boldsymbol{w}, \boldsymbol{x}_{i}\right\rangle+w_{0}\right|}{\|\boldsymbol{w}\|}
\end{aligned}
$$

- Since $y_{i} f\left(\boldsymbol{x}_{i}\right)>0$ should be satisfied, assume that there exists $B>0$ such that $y_{i} f\left(\boldsymbol{x}_{i}\right) \geq B$ for all $i \in\{1,2, \ldots, n\}$
- The margin maximization problem can be written as

$$
\begin{aligned}
& \max _{\boldsymbol{w}, w_{0}, B} \frac{B}{\|\boldsymbol{w}\|} \quad \text { subject to } y_{i} f\left(\boldsymbol{x}_{i}\right) \geq M, i \in\{1,2, \ldots, n\} \\
& \quad-B=\min _{i \in\{1,2, \ldots, n\}}\left|\left\langle\boldsymbol{w}, x_{i}\right\rangle+w_{0}\right|
\end{aligned}
$$

Hard Margin SVMs

- We can eliminate B and obtain
$\max _{\boldsymbol{w}, w_{0}} \frac{1}{\|\boldsymbol{w}\|} \quad$ subject to $y_{i} f\left(\boldsymbol{x}_{i}\right) \geq 1, i \in\{1,2, \ldots, n\}$
- This is equivalent to
$\min _{\boldsymbol{w}, w_{0}}\|\boldsymbol{w}\|^{2} \quad$ subject to $y_{i} f\left(\boldsymbol{x}_{i}\right) \geq 1, i \in\{1,2, \ldots, n\}$
- The standard formulation of hard margin SVMs
- There are data points $\boldsymbol{x}_{\boldsymbol{i}}$ satisfying $y_{i} f\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=1$, called support vectors
- The solution does not change even data points that are not support vectors are removed

Margin

Soft Margin

- Datasets are not often separable
- Extend SV classification to soft margin by relaxing $\langle\boldsymbol{w}, \boldsymbol{x}\rangle+w_{0} \geq 1$
- Change the constraint $y_{i} f\left(\boldsymbol{x}_{i}\right) \geq 1$ using the slack variable ξ_{i} to

$$
y_{i} f\left(\boldsymbol{x}_{i}\right)=y_{i}\left(\langle\boldsymbol{w}, \boldsymbol{x}\rangle+w_{0}\right) \geq 1-\xi_{i}, \quad i \in\{1,2, \ldots, n\}
$$

- The formulation of soft margin SVM (C-SVM) is

$$
\min _{\boldsymbol{w}, w_{0}, \xi} \frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{i \in\{1,2, \ldots, n\}} \xi_{i} \quad \text { s.t. } y_{i} f\left(\boldsymbol{x}_{i}\right) \geq 1-\xi_{i}, \xi_{i} \geq 0, i \in\{1,2, \ldots, n\}
$$

- C is called the regularization parameter

Soft Margin

Data Point Location

- $y_{i} f\left(\boldsymbol{x}_{i}\right)>1: \boldsymbol{x}_{i}$ is outside margin
- These points do not affect to the classification hyperplane
- $y_{i} f\left(\boldsymbol{x}_{i}\right)=1: \boldsymbol{x}_{i}$ is on margin
- $y_{i} f\left(\boldsymbol{x}_{i}\right)<1: \boldsymbol{x}_{i}$ is inside margin
- These points do not exist in hard margin
- Points on margin and inside margin are support vectors

Dual Problem (1/4)

- The formulation of C-SVM

$$
\min _{\boldsymbol{w}, w_{0}, \xi} \frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{i \in\{1,2, \ldots, n\}} \xi_{i} \quad \text { s.t. } y_{i} f\left(\boldsymbol{x}_{i}\right) \geq 1-\xi_{i}, \xi_{i} \geq 0, i \in\{1,2, \ldots, n\}
$$

is called the primal problem

- This is usually solved via the dual problem
- Make the Lagrange function using $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$:

$$
\begin{aligned}
& L\left(\boldsymbol{w}, w_{0}, \boldsymbol{\xi}, \alpha, \mu\right)=\frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{i \in[n]} \xi_{i}-\sum_{i \in[n]} \alpha_{i}\left(y_{i} f\left(\boldsymbol{x}_{i}\right)-1+\xi_{i}\right)-\sum_{i \in[n]} \mu_{i} \xi_{i} \\
& -[n]=\{1,2, \ldots, n\}
\end{aligned}
$$

Dual Problem (2/4)

- Let us consider

$$
D(\boldsymbol{\alpha}, \boldsymbol{\mu})=\min _{\boldsymbol{w}, w_{0}, \xi} L\left(\boldsymbol{w}, w_{0}, \xi, \boldsymbol{\alpha}, \boldsymbol{\mu}\right)
$$

and its maximization

$$
\max _{\alpha \geq 0, \mu \geq 0} D(\alpha, \mu)=\max _{\alpha \geq 0, \mu \geq 0} \min _{\boldsymbol{w}, w_{0}, \xi} L\left(\boldsymbol{w}, w_{0}, \xi, \alpha, \mu\right)
$$

- The inside minimization is achieved when

$$
\frac{\partial L}{\partial \boldsymbol{w}}=\boldsymbol{w}-\sum_{i \in[n]} \alpha_{i} y_{i} \boldsymbol{x}_{i}=0, \frac{\partial L}{\partial w_{0}}=-\sum_{i \in[n]} \alpha_{i} y_{i}=0, \frac{\partial L}{\partial \xi_{i}}=C-\alpha_{i}-\mu_{i}=0
$$

Dual Problem (3/4)

- Putting the three conditions to the Lagrange function to remove \boldsymbol{w}, w_{0}, and ξ, yielding

$$
\begin{aligned}
L & =\frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{i \in[n]} \xi_{i}-\sum_{i \in[n]} \alpha_{i}\left(y_{i} f\left(\boldsymbol{x}_{i}\right)-1+\xi_{i}\right)-\sum_{i \in[n]} \mu_{i} \xi_{i} \\
& =\frac{1}{2}\|\boldsymbol{w}\|^{2}-\sum_{i \in[n]} \alpha_{i} y_{i}\left\langle\boldsymbol{w}, \boldsymbol{x}_{i}\right\rangle-w_{0} \sum_{i \in[n]} \alpha_{i} y_{i}+\sum_{i \in[n]} \alpha_{i}+\sum_{i \in[n]}\left(C-\alpha_{i}-\mu_{i}\right) \xi_{i} \\
& =-\frac{1}{2} \sum_{i, j \in[n]} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle+\sum_{i \in[n]} \alpha_{i}
\end{aligned}
$$

Dual Problem (4/4)

- It can be proved that $\max _{\alpha \geq 0, \mu \geq 0} \min _{\boldsymbol{w}, w_{0}, \xi} L\left(\boldsymbol{w}, w_{0}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \mu\right)$, that is, the dual problem

$$
\max _{\alpha}-\frac{1}{2} \sum_{i, j \in[n]} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle+\sum_{i \in[n]} \alpha_{i}
$$

$$
\text { subject to } \sum_{i \in[n]} \alpha_{i} y_{i}=0,0 \leq \alpha_{i} \leq C, i \in[n]
$$

is equivalent to the primal problem

$$
\min _{\boldsymbol{w}, w_{0}, \xi} \frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{i \in\{1.2} \xi_{i} \quad \text { s.t. } y_{i} f\left(\boldsymbol{x}_{i}\right) \geq 1-\xi_{i}, \xi_{i} \geq 0, i \in[n]
$$

KKT (Karush-Kuhn-Tucker) condition

- The necessary conditions for a solution to be optimal:

$$
\begin{aligned}
& \frac{\partial L}{\partial \boldsymbol{w}}=\boldsymbol{w}-\sum_{i \in[n]} \alpha_{i} y_{i} \boldsymbol{x}_{i}=0, \frac{\partial L}{\partial w_{0}}=-\sum_{i \in[n]} \alpha_{i} y_{i}=0, \frac{\partial L}{\partial \xi_{i}}=C-\alpha_{i}-\mu_{i}=0 \\
& -\left(y_{i} f\left(\boldsymbol{x}_{i}\right)-1+\xi_{i}\right) \leq 0,-\xi_{i} \leq 0, \\
& \alpha_{i} \geq 0, \mu_{i} \geq 0, \\
& \alpha_{i}\left(y_{i} f\left(\boldsymbol{x}_{i}\right)-1-\xi_{i}\right)=0, \mu_{i} \xi_{i}=0, \\
& i \in[n]
\end{aligned}
$$

Recovering Primal Variables

- Using these conditions, from the optimal α, we have

$$
\begin{aligned}
f(\boldsymbol{x}) & =\sum_{i \in[n]} \alpha_{i} y_{i}\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}\right\rangle+w_{0}, \\
w_{0} & =y_{i}-\sum_{j \in[n]} \alpha_{j} y_{j}\left\langle\boldsymbol{x}_{j}, \boldsymbol{x}_{i}\right\rangle, \quad \forall i \in\left\{i \in[n] \mid 0<\alpha_{i}<C\right\}
\end{aligned}
$$

- Since the second condition holds for all $i \in\left\{i \in[n] \mid 0<\alpha_{i}<C\right\}$, one can take the average to avoid numerical errors

Data Point Location

- $y_{i} f\left(\boldsymbol{x}_{i}\right)>1 \Longleftrightarrow \alpha_{i}=0: \boldsymbol{x}_{i}$ is outside margin
- These points do not affect to the classification hyperplane
- $y_{i} f\left(\boldsymbol{x}_{i}\right)=1 \Longleftrightarrow 0<\alpha_{i}<C$: \boldsymbol{x}_{i} is on margin
- $y_{i} f\left(\boldsymbol{x}_{i}\right)<1 \Longleftrightarrow \alpha_{i}=C$: \boldsymbol{x}_{i} is inside margin
- These points do not exist in hard margin
- Points on margin and inside margin are support vectors

How to Solve?

- The (dual) problem:

$$
\begin{aligned}
& \max _{\alpha}-\frac{1}{2} \boldsymbol{\alpha}^{T} Q \boldsymbol{\alpha}+\mathbf{1}^{T} \boldsymbol{\alpha} \quad \text { s.t. } \boldsymbol{y}^{T} \boldsymbol{\alpha}=0,0 \leq \boldsymbol{\alpha} \leq C \mathbf{1} \\
& -Q \in \mathbb{R}^{n \times n} \text { is the matrix such that } q_{i j}=y_{i} y_{j}\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle
\end{aligned}
$$

- Since analytical solution is not available, iterative approach for continuous optimization with constraints is needed
- One of standard methods is the active set method

Active Set Method

- Divide the set [n] of indices into three sets:

$$
\begin{aligned}
O & =\left\{i \in[n] \mid \alpha_{i}=0\right\} \\
M & =\left\{i \in[n] \mid 0<\alpha_{i}<C\right\} \\
I & =\left\{i \in[n] \mid \alpha_{i}=C\right\}
\end{aligned}
$$

- O and I are called active sets
- The problem can be solved w.r.t. $i \in M$, yielding

$$
\left[\begin{array}{cc}
Q_{M} & \boldsymbol{y}_{M} \\
\boldsymbol{y}_{M}^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\alpha_{M} \\
\nu
\end{array}\right]=-C\left[\begin{array}{cc}
Q_{M, I} & \mathbf{1} \\
\mathbf{1}^{T} & \boldsymbol{y}_{I}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{1} \\
0
\end{array}\right]
$$

- This can be directly solved if Q_{M} is positive definite

Algorithm 1: Active Set Method

1 ACTIVESETMETHOD(D)
2 Initialize M, I, O
while there exists i s.t. $y_{i} f\left(\boldsymbol{x}_{i}\right)<1, i \in O$ or $y_{i} f\left(\boldsymbol{x}_{i}\right)>1, i \in I$ do Update M, I, O repeat
$\alpha_{M}^{\text {new }} \leftarrow$ the solution of the above equation
$\boldsymbol{d} \leftarrow \alpha_{M}^{\text {new }}-\alpha_{M}$
$\boldsymbol{\alpha}_{M} \leftarrow \alpha_{M}+\eta \boldsymbol{d} ; \quad / /$ max. η satisfying $\alpha_{M} \in[0, C]^{|M|}$
Move $i \in M$ from M to I or O if $\alpha_{i}=C$ or $\alpha_{i}=0$
until $\alpha_{M}=\alpha_{M}^{\text {new }}$;

Extension to Nonlinear Classification

- To achieve nonlinear classification, convert each data point \boldsymbol{x} to some point $\phi(\boldsymbol{x})$, and $f(\boldsymbol{x})$ becomes

$$
f(\boldsymbol{x})=\langle\boldsymbol{w}, \phi(\boldsymbol{x})\rangle+w_{0}
$$

- The dual problem becomes

$$
\begin{aligned}
& \max _{\alpha}- \frac{1}{2} \sum_{i, j \in[n]} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\phi\left(\boldsymbol{x}_{i}\right), \phi\left(\boldsymbol{x}_{j}\right)\right\rangle+\sum_{i \in[n]} \alpha_{i} \\
& \quad \text { subject to } \sum_{i \in[n]} \alpha_{i} y_{i}=0,0 \leq \alpha_{i} \leq C, i \in[n]
\end{aligned}
$$

- Only the dot product $\left\langle\phi\left(\boldsymbol{x}_{i}\right), \phi\left(\boldsymbol{x}_{j}\right)\right\rangle$ is used!
- We do not even need to know $\phi\left(\boldsymbol{x}_{i}\right)$ and $\phi\left(\boldsymbol{x}_{j}\right)$

C-SVM with Kernel Trick

- Use a kernel function: $K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\left\langle\phi\left(\boldsymbol{x}_{i}\right), \phi\left(\boldsymbol{x}_{j}\right)\right\rangle$
- We have

$$
\begin{aligned}
& \max _{\alpha}-\frac{1}{2} \sum_{1, j \in[n]} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)+\sum_{i \in[n]} \alpha_{i} \\
& \quad \text { subject to } \sum_{i \in[n]} \alpha_{i} y_{i}=0,0 \leq \alpha_{i} \leq C, i \in[n]
\end{aligned}
$$

- The technique of using K is called kernel trick

Kernel Regression

- From regression:
$\min _{\boldsymbol{\beta}} \sum_{i=1}^{N}\left(y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}\right)^{2}$
to kernel regression:
$\min \sum_{i=1}^{N}\left(y_{i}-f\left(\boldsymbol{x}_{i}\right)\right)^{2}=\min _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{N}\left(y_{i}-\sum_{j=1}^{N} \alpha_{j} K\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{i}\right)\right)^{2}$
- Solved as $\alpha=K^{-1} \boldsymbol{y}$
- For a new data point \boldsymbol{x}^{\prime}, its prediction is given as $\sum_{i=1}^{N} \alpha_{i} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}^{\prime}\right)$
- (Kernel) ridge regression (by adding $\lambda\|\boldsymbol{\beta}\|_{2}^{2}$) is often used

Positive Definite Kernel

- A kernel $K: \Omega \times \Omega \rightarrow \mathbb{R}$ is a positive definite kernel if
(i) $K(x, y)=K(y, x)$
(ii) For $x_{1}, x_{2}, \ldots, x_{n}$, the $n \times n$ matrix (called Gram matrix)

$$
\left(K_{i j}\right)=\left[\begin{array}{cccc}
K\left(x_{1}, x_{1}\right) & K\left(x_{2}, x_{1}\right) & \ldots & K\left(x_{n}, x_{1}\right) \\
K\left(x_{1}, x_{2}\right) & K\left(x_{2}, x_{2}\right) & \ldots & K\left(x_{n}, x_{2}\right) \\
\ldots & \ldots & \ldots & \ldots \\
K\left(x_{1}, x_{n}\right) & K\left(x_{2}, x_{n}\right) & \ldots & K\left(x_{n}, x_{n}\right)
\end{array}\right]
$$

is positive semidefinite. Equivalent conditions of PSD are

- There exists B s.t. $\left(K_{i j}\right)=B^{T} B$
- $\boldsymbol{c}^{T}\left(K_{i j}\right) \boldsymbol{c} \geq 0$ for any $\boldsymbol{c} \in \mathbb{R}^{n}$
- All eigenvalues of ($K_{i j}$) are nonnegative

Popular Positive Definite Kernels

- Linear Kernel

$$
K(\boldsymbol{x}, \boldsymbol{y})=\langle\boldsymbol{x}, \boldsymbol{y}\rangle
$$

- Gaussian (RBF) kernel

$$
K(\boldsymbol{x}, \boldsymbol{y})=\exp \left(-\frac{1}{\sigma^{2}}\|\boldsymbol{x}-\boldsymbol{y}\|^{2}\right)
$$

- Polynomial Kernel

$$
K(\boldsymbol{x}, \boldsymbol{y})=(\langle\boldsymbol{x}, \boldsymbol{y}\rangle+c)^{c} \quad c, d \in \mathbb{R}
$$

Simple Kernels

- The all-ones kernel

$$
K(\boldsymbol{x}, \boldsymbol{y})=1
$$

- The delta (Dirac) kernel

$$
K(\boldsymbol{x}, \boldsymbol{y})= \begin{cases}1 & \text { if } \boldsymbol{x}=\boldsymbol{y} \\ 0 & \text { otherwise }\end{cases}
$$

Closure Properties of Kernels

- For two kernels K_{1} and $K_{2}, K_{1}+K_{2}$ is a kernel
- For two kernels K_{1} and K_{2}, the product $K_{1} \cdot K_{2}$ is a kernel
- For a kernel K and a positive scalar $\lambda \in \mathbb{R}^{+}, \lambda K$ is a kernel
- For a kernel K on a set D, its zero-extension:

$$
K_{0}(\boldsymbol{x}, \boldsymbol{y})= \begin{cases}K(\boldsymbol{x}, \boldsymbol{y}) & \text { if } \boldsymbol{x}, \boldsymbol{y} \in D \\ 0 & \text { otherwise }\end{cases}
$$

is a kernel

Kernels on Structured Data

- Given objects X and Y, decompose them into substructures S and T
- The R-convolution kernel K_{R} by Haussler (1999) is given as $K_{R}(X, Y)=\sum_{s \in S, t \in T} K_{\text {base }}(s, t)$
- $K_{\text {base }}$ is an arbitrary base kernel, often the delta kernel
- For example, X is a graph and S is the set of all subgraphs

What Is Graph?

- An object consisting of vertices (nodes) connected with edges
- A graph is directed if the edges are directed, otherwise it is undirected
- A graph is written as $G=(V, E)$, where V is a vertex set and E is an edge set
- Labels can be associated with vertices and/or edges
- If a function ϕ gives labels, the label of a vertex $v \in V$ is $\phi(v)$ and that of an edge $e \in E$ is $\phi(e)$

Example of Graph

- A graph $G=(V, E, \phi)$
$-V=\{1,2,3,4\}$
- $E=\{\{1,2\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$
- $\phi(1)=$ green, $\phi(2)=$ blue, $\phi(3)=$ red, $\phi(4)=$ blue
- $\phi(\{\{1,2\})=$ zigzag, $\phi(\{1,4\})=$ straight, $\phi(\{2,3\})=$ zigzag, $\phi(\{2,4\})=$ straight, $\phi(\{3,4\}\})=$ straight

Example of Graph

- The adjacency matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

Similarity between Graphs

Similarity between Graphs

Example

G
G^{\prime}

Vertex Label Histogram Kernel

G^{\prime}

$\begin{array}{llll}G & 2 & 1 & 1\end{array}$ $\begin{array}{llll}G^{\prime} & 2 & 0 & 1\end{array}$

Edge Label Histogram Kernel

— WWW
$\begin{array}{llll}G & 3 & 2 & K_{E H}\left(G, G^{\prime}\right)=3 \cdot 1+2 \cdot 2=7 \\ G^{\prime} & 1 & 2\end{array}$

Vertex-Edge Label Histogram Kernel

Product Graph

- The direct product $G_{\times}=\left(V_{\times}, E_{\times}, \phi_{\times}\right)$of G and G^{\prime} :

$$
\left.\begin{array}{l}
V_{\times}=\left\{\left(v, v^{\prime}\right) \in V \times V^{\prime} \mid \phi(v)=\phi^{\prime}\left(v^{\prime}\right)\right\}, \\
E_{\times}=\left\{\left(\left(u, u^{\prime}\right),\left(v, v^{\prime}\right)\right) \in V_{\times} \times V_{\times} \left\lvert\, \begin{array}{l}
(u, v) \in E,\left(u^{\prime}, v^{\prime}\right) \in E^{\prime}, \\
\phi(u, v)=\phi^{\prime}\left(u^{\prime}, v^{\prime}\right)
\end{array}\right.\right.
\end{array}\right\}, ~ l
$$

- All labels are inherited

k-Step Random Walk Kernal

- The k-step (fixed-length- k) random walk kernel between G and G^{\prime} :

$$
K_{\times}^{k}\left(G, G^{\prime}\right)=\sum_{i, j=1}^{\left|V_{\times}\right|}\left[\lambda_{0} A_{\times}^{0}+\lambda_{1} A_{\times}^{1}+\lambda_{2} A_{\times}^{2}+\cdots+\lambda_{k} A_{\times}^{k}\right]_{i j} \quad\left(\lambda_{l}>0\right)
$$

- A_{\times}: The adjacency matrix of the product graph
- The $i j$ entry of A_{\times}^{n} shows the number of paths from i to j

Geometric Random Walk Kernel

- K_{\times}^{∞} can be directly computed if $\lambda_{\ell}=\lambda^{\ell}$ for each $\ell \in\{0, \ldots, k\}$ (geometric series), resulting in the geometric random walk kernel:

$$
\begin{aligned}
K_{\mathrm{GR}}\left(G, G^{\prime}\right) & =\sum_{i, j=1}^{\left|V_{\times}\right|}\left[\lambda^{0} A_{\times}^{0}+\lambda^{1} A_{\times}^{1}+\lambda^{2} A_{\times}^{2}+\cdots\right]_{i j}=\sum_{i, j=1}^{\left|V_{\times}\right|}\left[\sum_{\ell=0}^{\infty} \lambda^{\ell} A_{\times}^{\ell}\right]_{i j} \\
& =\sum_{i, j=1}^{\left|V_{\times}\right|}\left[\left(\mathbf{I}-\lambda A_{\times}\right)^{-1}\right]_{i j}
\end{aligned}
$$

- Well-defined only if $\lambda<1 / \mu_{x, \max }$ ($\mu_{\times, \max }$ is the max. eigenvalue of A_{\times})
- δ_{\times}(min. degree) $\leq \bar{d}_{\times}$(average degree) $\leq \mu_{x, \max } \leq \Delta_{\times}$(max. degree)

Weisfeiler-Lehman Kernel

Given graphs

Re-labeling after 1st iteration
$1,4 \rightarrow 6$
$2,3 \rightarrow 7$
$2,35 \rightarrow 8$
$2,245 \rightarrow 10$

$2,45 \rightarrow 9$ | 4,1235 $\rightarrow 11$ |
| :--- |
| $5,234 \rightarrow 13$ |

1st iteration

After 1st iteration

Weisfeiler-Lehman Kernel

- The kernel value becomes:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\text { label } \\
\phi(G)^{(1)} \\
\phi\left(G^{\prime}\right)^{(1)}
\end{array}\right]=\left[\begin{array}{lllllllllcccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
2 & 1 & 1 & 1 & 1 & 2 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right],} \\
& K_{\mathrm{WL}}^{1}\left(G, G^{\prime}\right)=11
\end{aligned}
$$

Performance Comparison

graphkernels Package

- A package for graph kernels available in R and Python
- R:
https://CRAN.R-project.org/package=graphkernels
- Python:
https://pypi.org/project/graphkernels/
- Paper:
https://doi.org/10.1093/bioinformatics/btx602

Summary

- SVM finds the "best" classification hyperplane
- The margin is maximized
- Although the original SVM can perform only linear classification, it can be extended to nonlinear classification for structured data using kernels
- Gaussian kernel + C-SVM can be the first choice for numerical data
- WL kernel can be the first choice for graph data

