

Inter-University Research Institute Corporation / Research Organization of Information and Systems

National Institute of Informatics

SVM and Kernel Methods

Data Mining 10 (データマイニング)

Mahito Sugiyama (杉山麿人)

Today's Outline

- Today's topic is support vector machines (SVMs) and kernel methods
- SVM performs binary classification by maximizing the margin
 - It is a popular supervised classification method
- SVM can perform nonlinear classification for structured data using kernel trick
- Graph kernels for classification for graph structured data

Classification Problem Setting

- Given a supervised dataset $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}, x_i \in \mathbb{R}^d$ (feature vector), $y_i \in C = \{-1, 1\}$ (label)
- Use a decision function (hyperplane) in the form of

$$f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + w_0 = \sum_{j=1}^d w^j x^j + w_0$$

• A classifier g(x) is given as

$$g(\boldsymbol{x}) = \begin{cases} 1 & \text{if } f(\boldsymbol{x}) > 0, \\ -1 & \text{if } f(\boldsymbol{x}) < 0 \end{cases}$$

• Goal: Find (\boldsymbol{w}, w_0) that correctly classifies the dataset

Classification by Hyperplane

Learning Procedure of Perceptron

- 1. $\boldsymbol{w} \leftarrow 0, b \leftarrow 0$ (or a small random value)
- 2. for $i = 1, 2, 3, \dots$ do
- 3. Receive *i*-th pair (x_i, y_i)
- 4. Compute $a = \sum_{j=1}^{d} w^j x_i^j + b$
- 5. if $y_i \cdot a < 0$ then
- $6. \qquad \boldsymbol{w} \leftarrow \boldsymbol{w} + y_i \boldsymbol{x}_i$
- 7. $b \leftarrow b + y_i$
- 8. end if
- 9. end for

// x_i is misclassified
// update the weight
// update the bias

// initialization

Correctness of Perceptron

- It is guaranteed that a perceptron always converges to a correct classifier
 - A correct classifier is a function *f* s.t.
 - f(x) > 0 if y = 1,
 - f(x) < 0 if y = -1
 - The convergence theorem
- Note: there are (infinitely) many functions that correctly classify *F* and *G*
 - A perceptron converges to one of them

Support Vector Machines (SVMs)

- A dataset *D* is separable by $f \iff y_i f(\mathbf{x}_i) > 0, \forall i \in \{1, 2, ..., n\}$
- The margin is the distance from the classification hyperplane to the closest data point
- Support vector machines (SVMs) tries to find a hyperplane that maximizes the margin

Margin

Formulation of SVMs

- The distance from a point \mathbf{x}_i to a hyperplane $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + w_0 = 0$ is $\frac{|f(\mathbf{x}_i)|}{||\mathbf{w}||} = \frac{|\langle \mathbf{w}, \mathbf{x}_i \rangle + w_0|}{||\mathbf{w}||}$
- Since $y_i f(x_i) > 0$ should be satisfied, assume that there exists B > 0 such that $y_i f(x_i) \ge B$ for all $i \in \{1, 2, ..., n\}$
- The margin maximization problem can be written as $\max_{\boldsymbol{w},w_0,B} \frac{B}{\|\boldsymbol{w}\|} \quad \text{subject to } y_i f(\boldsymbol{x}_i) \ge M, i \in \{1, 2, ..., n\}$
 - $B = \min_{i \in \{1,2,\dots,n\}} |\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + w_0|$

Hard Margin SVMs

- We can eliminate *B* and obtain $\max_{\boldsymbol{w},w_0} \frac{1}{\|\boldsymbol{w}\|} \quad \text{subject to } y_i f(\boldsymbol{x}_i) \ge 1, i \in \{1, 2, ..., n\}$
- This is equivalent to

 $\min_{\boldsymbol{w},w_0} \|\boldsymbol{w}\|^2 \quad \text{subject to } y_i f(\boldsymbol{x}_i) \ge 1, i \in \{1, 2, \dots, n\}$

- The standard formulation of hard margin SVMs
- There are data points x_i satisfying $y_i f(x_i) = 1$, called support vectors
- The solution does not change even data points that are not support vectors are removed

Margin

Soft Margin

- Datasets are not often separable
- Extend SV classification to soft margin by relaxing $\langle w, x \rangle + w_0 \ge 1$
- Change the constraint $y_i f(\mathbf{x}_i) \ge 1$ using the slack variable ξ_i to $y_i f(\mathbf{x}_i) = y_i (\langle \mathbf{w}, \mathbf{x} \rangle + w_0) \ge 1 - \xi_i, \quad i \in \{1, 2, ..., n\}$
- The formulation of soft margin SVM (C-SVM) is

 $\min_{\boldsymbol{w},w_0,\boldsymbol{\xi}} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i \in \{1,2,\dots,n\}} \xi_i \quad \text{s.t. } y_i f(\boldsymbol{x}_i) \ge 1 - \xi_i, \xi_i \ge 0, i \in \{1,2,\dots,n\}$

- *C* is called the regularization parameter

Soft Margin

Data Point Location

- $y_i f(x_i) > 1$: x_i is outside margin
 - These points do not affect to the classification hyperplane
- $y_i f(\mathbf{x}_i) = 1$: \mathbf{x}_i is on margin
- $y_i f(\mathbf{x}_i) < 1$: \mathbf{x}_i is inside margin
 - These points do not exist in hard margin
- Points on margin and inside margin are support vectors

Dual Problem (1/4)

• The formulation of C-SVM $\min_{\boldsymbol{w},w_0,\boldsymbol{\xi}} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i \in \{1,2,\dots,n\}} \xi_i \quad \text{s.t. } y_i f(\boldsymbol{x}_i) \ge 1 - \xi_i, \xi_i \ge 0, i \in \{1,2,\dots,n\}$

is called the primal problem

- This is usually solved via the dual problem
- Make the Lagrange function using $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_n), \boldsymbol{\mu} = (\mu_1, \dots, \mu_n)$: $L(\boldsymbol{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\mu}) = \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i \in [n]} \xi_i - \sum_{i \in [n]} \alpha_i (y_i f(\boldsymbol{x}_i) - 1 + \xi_i) - \sum_{i \in [n]} \mu_i \xi_i$

Dual Problem (2/4)

• Let us consider

$$D(\boldsymbol{\alpha},\boldsymbol{\mu}) = \min_{\boldsymbol{w},w_0,\boldsymbol{\xi}} L(\boldsymbol{w},w_0,\boldsymbol{\xi},\boldsymbol{\alpha},\boldsymbol{\mu})$$

and its maximization

$$\max_{\boldsymbol{\alpha} \ge 0, \boldsymbol{\mu} \ge 0} D(\boldsymbol{\alpha}, \boldsymbol{\mu}) = \max_{\boldsymbol{\alpha} \ge 0, \boldsymbol{\mu} \ge 0} \min_{\boldsymbol{w}, w_0, \boldsymbol{\xi}} L(\boldsymbol{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\mu})$$

• The inside minimization is achieved when $\frac{\partial L}{\partial \boldsymbol{w}} = \boldsymbol{w} - \sum_{i \in [n]} \alpha_i y_i \boldsymbol{x}_i = 0, \ \frac{\partial L}{\partial w_0} = -\sum_{i \in [n]} \alpha_i y_i = 0, \ \frac{\partial L}{\partial \xi_i} = C - \alpha_i - \mu_i = 0$

Dual Problem (3/4)

• Putting the three conditions to the Lagrange function to remove \boldsymbol{w}, w_0 , and $\boldsymbol{\xi}$, yielding

$$L = \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i \in [n]} \xi_i - \sum_{i \in [n]} \alpha_i (y_i f(\boldsymbol{x}_i) - 1 + \xi_i) - \sum_{i \in [n]} \mu_i \xi_i$$

$$= \frac{1}{2} \|\boldsymbol{w}\|^2 - \sum_{i \in [n]} \alpha_i y_i \langle \boldsymbol{w}, \boldsymbol{x}_i \rangle - w_0 \sum_{i \in [n]} \alpha_i y_i + \sum_{i \in [n]} \alpha_i + \sum_{i \in [n]} (C - \alpha_i - \mu_i) \xi_i$$

$$= -\frac{1}{2} \sum_{i,j \in [n]} \alpha_i \alpha_j y_i y_j \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle + \sum_{i \in [n]} \alpha_i$$

Dual Problem (4/4)

• It can be proved that $\max_{\alpha \ge 0, \mu \ge 0} \min_{w, w_0, \xi} L(w, w_0, \xi, \alpha, \mu)$, that is, the dual problem

$$\max_{\alpha} -\frac{1}{2} \sum_{i,j \in [n]} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle + \sum_{i \in [n]} \alpha_i$$

subject to $\sum_{i \in [n]} \alpha_i y_i = 0, \ 0 \le \alpha_i \le C, \ i \in [n]$

is equivalent to the primal problem

$$\min_{\boldsymbol{w},w_0,\boldsymbol{\xi}} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i \in \{1,2,\dots,n\}} \xi_i \quad \text{s.t. } y_i f(\boldsymbol{x}_i) \ge 1 - \xi_i, \ \xi_i \ge 0, \ i \in [n]$$

KKT (Karush-Kuhn-Tucker) condition

• The necessary conditions for a solution to be optimal:

$$\begin{aligned} \frac{\partial L}{\partial \boldsymbol{w}} &= \boldsymbol{w} - \sum_{i \in [n]} \alpha_i y_i \boldsymbol{x}_i = 0, \ \frac{\partial L}{\partial w_0} = -\sum_{i \in [n]} \alpha_i y_i = 0, \ \frac{\partial L}{\partial \xi_i} = C - \alpha_i - \mu_i = 0 \\ - (y_i f(\boldsymbol{x}_i) - 1 + \xi_i) &\leq 0, \ -\xi_i \leq 0, \\ \alpha_i &\geq 0, \ \mu_i \geq 0, \\ \alpha_i (y_i f(\boldsymbol{x}_i) - 1 - \xi_i) &= 0, \ \mu_i \xi_i = 0, \\ i \in [n] \end{aligned}$$

Recovering Primal Variables

• Using these conditions, from the optimal α , we have

$$f(\mathbf{x}) = \sum_{i \in [n]} \alpha_i y_i \langle \mathbf{x}_i, \mathbf{x} \rangle + w_0,$$

$$w_0 = y_i - \sum_{j \in [n]} \alpha_j y_j \langle \mathbf{x}_j, \mathbf{x}_i \rangle, \quad \forall i \in \{i \in [n] \mid 0 < \alpha_i < C\}$$

- Since the second condition holds for all $i \in \{i \in [n] \mid 0 < \alpha_i < C\}$, one can take the average to avoid numerical errors

Data Point Location

- $y_i f(x_i) > 1 \iff \alpha_i = 0$: x_i is outside margin
 - These points do not affect to the classification hyperplane
- $y_i f(\mathbf{x}_i) = 1 \iff 0 < \alpha_i < C$: \mathbf{x}_i is on margin
- $y_i f(\mathbf{x}_i) < 1 \iff \alpha_i = C$: \mathbf{x}_i is inside margin
 - These points do not exist in hard margin
- Points on margin and inside margin are support vectors

How to Solve?

• The (dual) problem:

 $\max_{\alpha} -\frac{1}{2}\alpha^{T}Q\alpha + \mathbf{1}^{T}\alpha \quad \text{s.t. } \mathbf{y}^{T}\alpha = 0, \ 0 \le \alpha \le C\mathbf{1}$

- $Q \in \mathbb{R}^{n \times n}$ is the matrix such that $q_{ij} = y_i y_j \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle$

- Since analytical solution is not available, iterative approach for continuous optimization with constraints is needed
- One of standard methods is the active set method

Active Set Method

- Divide the set [*n*] of indices into three sets:
 - $O = \{i \in [n] \mid \alpha_i = 0\}$ $M = \{i \in [n] \mid 0 < \alpha_i < C\}$ $I = \{i \in [n] \mid \alpha_i = C\}$
 - *O* and *I* are called active sets
- The problem can be solved w.r.t. $i \in M$, yielding

$$\begin{bmatrix} Q_M & \boldsymbol{y}_M \\ \boldsymbol{y}_M^T & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \alpha_M \\ \nu \end{bmatrix} = -C \begin{bmatrix} Q_{M,I} & \boldsymbol{1} \\ \boldsymbol{1}^T & \boldsymbol{y}_I \end{bmatrix} + \begin{bmatrix} \boldsymbol{1} \\ \boldsymbol{0} \end{bmatrix}$$

- This can be directly solved if Q_M is positive definite

Algorithm 1: Active Set Method

- **1** ACTIVESETMETHOD(*D*)
- **2** Initialize *M*, *I*, *O*
- **while** there exists i s.t. $y_i f(\mathbf{x}_i) < 1$, $i \in O$ or $y_i f(\mathbf{x}_i) > 1$, $i \in I$ **do** Update M, I, O

repeat

5

6

7

8

9

10

 $\begin{array}{l} \boldsymbol{\alpha}_{M}^{\text{new}} \leftarrow \text{the solution of the above equation} \\ \boldsymbol{d} \leftarrow \boldsymbol{\alpha}_{M}^{\text{new}} - \boldsymbol{\alpha}_{M} \\ \boldsymbol{\alpha}_{M} \leftarrow \boldsymbol{\alpha}_{M} + \eta \boldsymbol{d} ; \qquad // \max. \eta \text{ satisfying } \boldsymbol{\alpha}_{M} \in [0, C]^{|M|} \\ \text{Move } i \in M \text{ from } M \text{ to } I \text{ or } O \text{ if } \boldsymbol{\alpha}_{i} = C \text{ or } \boldsymbol{\alpha}_{i} = 0 \\ \textbf{until } \boldsymbol{\alpha}_{M} = \boldsymbol{\alpha}_{M}^{new}; \end{array}$

Extension to Nonlinear Classification

• To achieve nonlinear classification, convert each data point x to some point $\phi(x)$, and f(x) becomes

 $f(\boldsymbol{x}) = \langle \boldsymbol{w}, \boldsymbol{\phi}(\boldsymbol{x}) \rangle + w_0$

• The dual problem becomes

$$\max_{\alpha} -\frac{1}{2} \sum_{i,j \in [n]} \alpha_i \alpha_j y_i y_j \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle + \sum_{i \in [n]} \alpha_i$$

subject to $\sum_{i \in [n]} \alpha_i y_i = 0, \ 0 \le \alpha_i \le C, i \in [n]$

- Only the dot product $\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$ is used!
- We do not even need to know $\phi(\mathbf{x}_i)$ and $\phi(\mathbf{x}_j)$

C-SVM with Kernel Trick

- Use a kernel function: $K(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$
- We have

$$\max_{\alpha} -\frac{1}{2} \sum_{i,j \in [n]} \alpha_i \alpha_j y_i y_j K(\boldsymbol{x}_i, \boldsymbol{x}_j) + \sum_{i \in [n]} \alpha_i$$

subject to $\sum_{i \in [n]} \alpha_i y_i = 0, \ 0 \le \alpha_i \le C, i \in [n]$

- The technique of using *K* is called kernel trick

Kernel Regression

• From regression:

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{N} (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2$$

to kernel regression:

$$\min \sum_{i=1}^{N} (y_i - f(\boldsymbol{x}_i))^2 = \min_{\boldsymbol{\alpha} \in \mathbb{R}^n} \sum_{i=1}^{N} \left(y_i - \sum_{j=1}^{N} \alpha_j K(\boldsymbol{x}_j, \boldsymbol{x}_i) \right)^2$$

- Solved as $\alpha = K^{-1}y$
- For a new data point x', its prediction is given as $\sum_{i=1}^{N} \alpha_i K(x_i, x')$
- (Kernel) ridge regression (by adding $\lambda ||\beta||_2^2$) is often used

Positive Definite Kernel

- A kernel $K : \Omega \times \Omega \to \mathbb{R}$ is a positive definite kernel if
 - (i) K(x, y) = K(y, x)(ii) For $x_1, x_2, ..., x_n$, the $n \times n$ matrix (called Gram matrix) $(K_{ij}) = \begin{bmatrix} K(x_1, x_1) & K(x_2, x_1) & ... & K(x_n, x_1) \\ K(x_1, x_2) & K(x_2, x_2) & ... & K(x_n, x_2) \\ ... & ... & ... & ... \\ K(x_1, x_n) & K(x_2, x_n) & ... & K(x_n, x_n) \end{bmatrix}$

is positive semidefinite. Equivalent conditions of PSD are

- There exists B s.t. $(K_{ij}) = B^T B$
- $\boldsymbol{c}^{T}(K_{ij})\boldsymbol{c} \geq 0$ for any $\boldsymbol{c} \in \mathbb{R}^{n}$
- All eigenvalues of (K_{ij}) are nonnegative

Popular Positive Definite Kernels

• Linear Kernel

 $K(\boldsymbol{x},\boldsymbol{y}) = \langle \boldsymbol{x},\boldsymbol{y} \rangle$

• Gaussian (RBF) kernel

$$K(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{1}{\sigma^2}||\mathbf{x} - \mathbf{y}||^2\right)$$

Polynomial Kernel

$$K(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle + c)^c \quad c, d \in \mathbb{R}$$

Simple Kernels

• The all-ones kernel

 $K(\boldsymbol{x},\boldsymbol{y}) = 1$

• The delta (Dirac) kernel

$$K(\boldsymbol{x}, \boldsymbol{y}) = \begin{cases} 1 & \text{if } \boldsymbol{x} = \boldsymbol{y}, \\ 0 & \text{otherwise} \end{cases}$$

Closure Properties of Kernels

- For two kernels K_1 and K_2 , $K_1 + K_2$ is a kernel
- For two kernels K_1 and K_2 , the product $K_1 \cdot K_2$ is a kernel
- For a kernel *K* and a positive scalar $\lambda \in \mathbb{R}^+$, λK is a kernel
- For a kernel *K* on a set *D*, its zero-extension:

$$K_0(\boldsymbol{x}, \boldsymbol{y}) = \begin{cases} K(\boldsymbol{x}, \boldsymbol{y}) & \text{if } \boldsymbol{x}, \boldsymbol{y} \in D, \\ 0 & \text{otherwise} \end{cases}$$

is a kernel

Kernels on Structured Data

- Given objects *X* and *Y*, decompose them into substructures *S* and *T*
- The R-convolution kernel K_R by Haussler (1999) is given as $K_R(X, Y) = \sum_{s \in S, t \in T} K_{base}(s, t)$
 - K_{base} is an arbitrary base kernel, often the delta kernel
- For example, *X* is a graph and *S* is the set of all subgraphs

What Is Graph?

- An object consisting of vertices (nodes) connected with edges
- A graph is directed if the edges are directed, otherwise it is undirected
- A graph is written as G = (V, E), where V is a vertex set and E is an edge set
- Labels can be associated with vertices and/or edges
 - If a function ϕ gives labels, the label of a vertex $v \in V$ is $\phi(v)$ and that of an edge $e \in E$ is $\phi(e)$

Example of Graph

- A graph $G = (V, E, \phi)$
 - $V = \{1, 2, 3, 4\}$
 - $E = \{\{1, 2\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}$
 - $\phi(1) = \text{green}, \phi(2) = \text{blue},$ $\phi(3) = \text{red}, \phi(4) = \text{blue}$
 - $\phi(\{\{1,2\}\}) = zigzag, \phi(\{1,4\}) = straight, \phi(\{2,3\}) = zigzag, \phi(\{2,4\}) = straight, \phi(\{3,4\}\}) = straight$

Example of Graph

Similarity between Graphs

Similarity between Graphs

Example

Vertex Label Histogram Kernel

37/47

Edge Label Histogram Kernel

38/47

Vertex-Edge Label Histogram Kernel

39/47

Product Graph

• The direct product $G_{\times} = (V_{\times}, E_{\times}, \phi_{\times})$ of G and G':

$$V_{\times} = \{ (v, v') \in V \times V' \mid \phi(v) = \phi'(v') \},\$$
$$E_{\times} = \left\{ ((u, u'), (v, v')) \in V_{\times} \times V_{\times} \mid \begin{array}{l} (u, v) \in E, \ (u', v') \in E', \\ \phi(u, v) = \phi'(u', v') \end{array} \right\}$$

- All labels are inherited

k-Step Random Walk Kernal

• The *k*-step (fixed-length-*k*) random walk kernel between *G* and *G*':

$$K_{\times}^{k}(G,G') = \sum_{i,j=1}^{|V_{\times}|} \left[\lambda_{0}A_{\times}^{0} + \lambda_{1}A_{\times}^{1} + \lambda_{2}A_{\times}^{2} + \dots + \lambda_{k}A_{\times}^{k} \right]_{ij} \quad (\lambda_{l} > 0)$$

- A_{\times} : The adjacency matrix of the product graph
- The *ij* entry of A_{\times}^{n} shows the number of paths from *i* to *j*

Geometric Random Walk Kernel

• K_{\times}^{∞} can be directly computed if $\lambda_{\ell} = \lambda^{\ell}$ for each $\ell \in \{0, ..., k\}$ (geometric series), resulting in the geometric random walk kernel:

$$\begin{split} K_{\mathrm{GR}}(G,G') &= \sum_{i,j=1}^{|V_{\times}|} \left[\lambda^0 A_{\times}^0 + \lambda^1 A_{\times}^1 + \lambda^2 A_{\times}^2 + \cdots \right]_{ij} = \sum_{i,j=1}^{|V_{\times}|} \left[\sum_{\ell=0}^{\infty} \lambda^{\ell} A_{\times}^{\ell} \right]_{ij} \\ &= \sum_{i,j=1}^{|V_{\times}|} \left[(\mathbf{I} - \lambda A_{\times})^{-1} \right]_{ij} \end{split}$$

- Well-defined only if $\lambda < 1/\mu_{\times,\max}$ ($\mu_{\times,\max}$ is the max. eigenvalue of A_{\times})
- − δ_{\times} (min. degree) ≤ $\overline{d_{\times}}$ (average degree) ≤ $\mu_{\times,\max}$ ≤ Δ_{\times} (max. degree)

Weisfeiler-Lehman Kernel

Re-labeling after 1st iteration

1,4 🄶 6	3,245 -> 10
2,3 -> 7	4,1135 → 11
2,35 🔶 8	4,1235 -> 12
2,45 -> 9	5,234 -> 13

After 1st iteration

Weisfeiler-Lehman Kernel

• The kernel value becomes:

Performance Comparison

graphkernels Package

- A package for graph kernels available in R and Python
- R:

https://CRAN.R-project.org/package=graphkernels

- Python: https://pypi.org/project/graphkernels/
- Paper:

https://doi.org/10.1093/bioinformatics/btx602

Summary

- SVM finds the "best" classification hyperplane
 - The margin is maximized
- Although the original SVM can perform only linear classification, it can be extended to nonlinear classification for structured data using kernels
- Gaussian kernel + C-SVM can be the first choice for numerical data
- WL kernel can be the first choice for graph data