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Today’s Outline
• Today’s topic is feature selection

– Find relevant variables from datasets
• Feature selection detects variables, or features, that are associated
with the target variable from the set of all variables in a given
dataset
– The target variable can be binary (0 and 1 for cases and controls)
in a case-control study or continuous
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Variable Ranking (Filter Method)
1. Measure the degree of association between the target variable

and each variable by some scoring method
– Pearson’s correlation coefficient
– Mutual information

2. Rank variables using the score
• The above two-step procedure is called the filter method
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Pearson’s Correlation Coefficient
• (Pearson’s) correlation coefficient 𝜌measures the linear
association between two variables
– The larger the absolute value |𝜌| is, the stronger the association is
– 𝜌 > 0 means the positive correlation, 𝜌 < 0 the negative correlation

• 𝜌 between two random variables 𝑋 and 𝑌 is defined as

𝜌 =
𝜎𝑋𝑌
𝜎𝑋𝜎𝑌

=
𝐄
[
(𝑋 − 𝐄[𝑋])(𝑌 − 𝐄[𝑌])

]

√
𝐄
[
(𝑋 − 𝐸[𝑋])2

]
𝐄
[
(𝑌 − 𝐸[𝑌])2

]

– 𝜎𝑋𝑌 is the covariance, 𝜎𝑋 is the standard deviation
– 𝐄[𝑋] is the expectation
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Sample Correlation Coefficient
• Given a dataset (sample) 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑁 , 𝑦𝑁)},
the sample correlation coefficient 𝑟 is computed as

𝑟 =
∑𝑁

𝑖=1(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)
√∑𝑁

𝑖=1(𝑥𝑖 − 𝑥)2
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦)2
,

𝑥 = 1
𝑁

𝑁∑

𝑖=1
𝑥𝑖 , 𝑦 = 1

𝑁

𝑁∑

𝑖=1
𝑦𝑖

4/25



Properties of Correlation Coefficient
• −1 ≤ 𝜌 ≤ 1 and 1, −1 are the strongest correlation
• 𝑋 and 𝑌 are independent ⇐⇒ 𝜌(𝑥) = 0

– 𝑋 and 𝑌 are (statistically) independent if
𝑃(𝑋 ∪ 𝑌) = 𝑃(𝑋)𝑃(𝑌)
and denoted by 𝑋 ⫫ 𝑌

• However, [𝜌(𝑥) = 0 ⇐⇒ 𝑋 and 𝑌 are independent] does not hold
– 𝜌(𝑥) can be 0 for nonlinear association
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Mutual Information
• For a pair of discrete random variables 𝑋 and 𝑌, the mutual
information is defined as

𝐼(𝑋,𝑌) =
∑

𝑥∈𝑋

∑

𝑦∈𝑌
𝑝(𝑥, 𝑦) log (

𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)

)

– 𝑝(𝑥, 𝑦): joint probability, 𝑝(𝑥) and 𝑝(𝑦): marginal probability
• Properties:

– 𝐼(𝑋,𝑌) ≥ 0
– 𝐼(𝑋,𝑌) = 𝐻(𝑋) +𝐻(𝑌) −𝐻(𝑋,𝑌) = 𝐻(𝑋) −𝐻(𝑌 | 𝑋)

◦ 𝐻(𝑋) is the entropy: −∑𝑥∈𝑋 𝑝(𝑥) log𝑝(𝑥)
◦ 𝐻(𝑋,𝑌) is the joint entropy: −∑𝑥∈𝑋

∑
𝑦∈𝑌 𝑝(𝑥, 𝑦) log𝑝(𝑥, 𝑦)
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Properties of Mutual Information
• Pros:

– The mutual information can measure both linear and nonlinear
associations
◦ 𝑋 and 𝑌 are independent⇐⇒ 𝐼(𝑋,𝑌) = 0

• Cons:
– Additional discretization is needed to estimate the mutual information
for continuous variables

– Not normalized in the original form, but can be normalized by

𝐼∗(𝑋,𝑌) =
𝐼(𝑋,𝑌)

√
𝐻(𝑋)𝐻(𝑌)
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Computing the p-value
• 𝑝-value shows the probability of getting the dataset with assuming
that there is no association between variables
– Often used in science, e.g. biology

• Permutation test can be used to compute the 𝑝-value
(i) Compute the association score 𝑠 of the given dataset
(ii) Repeat the following ℎ times and get ℎ scores 𝑠1, 𝑠2,… , 𝑠ℎ:

a. Fix 𝑥 and permute indices of 𝑦
b. Compute the score using the permuted indices

(iii) The 𝑝-value = |{𝑖 ∈ [ℎ] ∣ 𝑠𝑖 > 𝑠}| ∕ℎ
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Manhattan Plot for Visualization

0

2

4

6

8

Variables
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

–l
og

10(
p-
va
lu
e)

9/25



Properties of Filter Method
• Pros:

– Easy to use
– Easy to understand

• Cons:
– Redundant features might be selected as interactions between
variables are not considered
◦ If a dataset contains exactly the same variables that have the

strong association with the target variable, both variables are
selected
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Wrapper Method
• A wrapper method repeats to construct a classifier for each subset
of variables
(i) Given a dataset with 𝑛 variables 𝑋1, 𝑋2,… , 𝑋𝑛 and a target variable 𝑌
(ii) Repeat the following for every subset 𝐼 ⊆ [𝑛]

a. Construct a subset of the dataset using only variables in 𝐼
b. Apply classification and measure the goodness (e.g. MSE)

(i) Choose the best subset
• It is computationally too expensive if 𝑛 is large
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Embedded Method
• Variables are automatically selected during the process of learning
a prediction model from a dataset

• The representative method: the Lasso
– It learns a linear prediction model, where a set of variables, which
receive nonzero coefficients, is automatically selected in the learning
process by regularizing the number of variables

– The joint additive effect of selected variables maximizes the prediction
accuracy of the model

12/25



The Lasso
• The Lasso is the following optimization problem

min
𝒘,𝒘0

1
𝑁

𝑁∑

𝑖=1

(
𝑦𝑖 − ⟨𝒘,𝒙𝑖⟩ − 𝑤0

)2
s.t. ‖𝒘‖1 ≤ 𝑡

– ‖𝒘‖1 =
∑𝑛

𝑗=1 |𝑤
𝑗| (𝓁1-norm)

– Minimizing squared error loss with the constraint
• The solution typically has many of the 𝑤𝑗 equal to zero

– {𝑗 ∈ [𝑛] ∣ 𝑤𝑗 ≠ 0}, called the active set, is considered to be the set of
selected variables
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The Lasso
• More convenient Lagrange form of the Lasso;

min
𝒘,𝑤0

1
2𝑁

𝑁∑

𝑖=1

(
𝑦𝑖 − ⟨𝒘,𝒙𝑖⟩ − 𝑤0

)2
+ 𝜆‖𝒘‖1

• If we center the dataset beforehand, it can be written as

min
𝒘

1
2𝑁

𝑁∑

𝑖=1

(
𝑦𝑖 − ⟨𝒘,𝒙𝑖⟩

)2
+ 𝜆‖𝒘‖1,

min
𝒘

1
2𝑁 ‖𝒚 − 𝑋𝒘‖22 + 𝜆‖𝒘‖1,
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Lasso Constraint

w1 w1

w2 w2

ŵ ŵ

squared-loss squared-loss

L1 constraint L2 constraint

solution solution
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Regularization Path (𝑁 = 1000, 𝑛 = 100)
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MSE (𝑁 = 1000, 𝑛 = 100)
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Fitting of the Lasso
• Solution of the Lasso problem satisfies the subgradient condition:

−1𝑛 ⟨𝒙
𝑗 ,𝒚 − 𝑋�̂�⟩ + 𝜆𝑠𝑗 = 0, 𝑗 = 1, 2,… , 𝑛

– 𝒙𝑗 = (𝑥𝑗1, 𝑥
𝑗
2,… , 𝑥

𝑗
𝑁) ∈ ℝ𝑁

– 𝑠𝑗 = sign(�̂�𝑗) if �̂�𝑗 ≠ 0 and 𝑠𝑗 ∈ [−1, 1] if �̂�𝑗 = 0
• Thus we have
⎧

⎨
⎩

− 1
𝑛
||||⟨𝒙

𝑗 ,𝒚 − 𝑋�̂�⟩|||| = 𝜆, if 𝑤𝑗 ≠ 0,

− 1
𝑛
||||⟨𝒙

𝑗 ,𝒚 − 𝑋�̂�⟩|||| ≤ 𝜆, if 𝑤𝑗 = 0,

• �̂� is a piecewise-linear function w.r.t. 𝜆→ LAR algorithm
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Algorithm 1: Least Angle Regression
1 LAR(𝑋, 𝒚)
2 Standardize 𝑋 (mean zero, unit 𝓁2 norm)
3 𝒓0 = 𝒚 − 𝒚, 𝒘0 ← (0, 0,… , 0)
4 Find 𝒙𝑗 which has the largest correlation |⟨𝒙𝑗 , 𝒓0⟩|
5 𝜆0 ← (1∕𝑁)|⟨𝒙𝑗 , 𝒓0⟩|; 𝐴 ← {𝑗}; 𝑋𝐴 ← 𝑋 with only 𝐴 = {𝑗}
6 foreach 𝑘 ∈ {1, 2,… , 𝐾 = min{𝑁 − 1, 𝑛}} do
7 LAREACH(𝑋, 𝒚, 𝐴, 𝜆𝑘−1, 𝒓𝑘−1, 𝒘𝑘−1)
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Algorithm 2: Least Angle Regression
1 LAREACH(𝑋, 𝒚, 𝐴, 𝜆𝑘−1, 𝒓𝑘−1, 𝒘𝑘−1)
2 𝛿 ← (1∕𝑛𝜆𝑘−1)(𝑋𝑇

𝐴𝑋)
−1𝑋𝑇

𝐴𝒓𝑘−1
3 ∆← (0, 0,… , 0); ∆𝐴 ← 𝛿
4 Decrease 𝜆 (0 < 𝜆 ≤ 𝜆𝑘−1) and find 𝓁 ∉ 𝐴 that first achieves

(1∕𝑁)|⟨𝒙𝓁, 𝒓(𝜆)⟩| = 𝜆, where
𝒓(𝜆) = 𝒚 − 𝑋𝒘(𝜆) = 𝒓𝑘−1 − (𝜆𝑘−1 − 𝜆)𝑋𝐴𝛿,
𝒘(𝜆) = 𝒘𝑘−1 + (𝜆𝑘−1 − 𝜆)∆

5 𝐴 ← 𝐴 ∪ {𝓁}; 𝒘𝑘 ← 𝒘(𝜆); 𝒓𝑘 ← 𝒚 − 𝑋𝒘(𝑘)
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Dimension Reduction
• Dimension reduction also reduces the number of variables
• Variables are not directly selected but transformed into principal
variables

• t-SNE (t-distributed stochastic neighbor embedding) is recently
becoming a popular method and often used to visualize a
multi-dimensional dataset (van der Maaten and Hinton, 2008)
– This can be used for visualization
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t-SNE
• Given a dataset 𝐷 = {𝒙1,𝒙2,… ,𝒙𝑁}, define 𝑝𝑗|𝑖 for each 𝑖, 𝑗 ∈ [𝑁] as

𝑝𝑗|𝑖 =
exp

(
−‖𝒙𝑖 − 𝒙𝑗‖2∕2𝜎2𝑖

)

∑
𝑘≠𝑖 exp

(
−‖𝒙𝑖 − 𝒙𝑘‖2∕2𝜎2𝑖

)

– 𝜎𝑖 is the variance of the Gaussian
– 𝑝𝑖|𝑖 = 0
– We also use 𝑝𝑖𝑗 = (𝑝𝑗|𝑖 + 𝑝𝑖|𝑗)∕2𝑁

• Goal: Find low-dimensional 𝒚1,𝒚2,… ,𝒚𝑁 of the original
𝒙1,𝒙2,… ,𝒙𝑁 with keeping the proxy between points
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How to Set Variance
• Given the perplexity as a parameter, which is defined as
Perp(𝑃𝑖) = 2𝐻(𝑃𝑖)

for a distribution 𝑃𝑖 and its entropy 𝐻(𝑃𝑖) such that
𝐻(𝑃𝑖) = −

∑

𝑗
𝑝𝑗|𝑖 log𝑝𝑗|𝑖

• For each 𝑖 ∈ [𝑁], find 𝜎2𝑖 that satisfies the given perplexity
• In practice, the perplexity from 5 to 50 is recommended
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t-SNE Formulation
• For low-dimensional 𝒚𝑖 , 𝒚𝑗 of 𝒙𝑖 , 𝒙𝑗 ,

𝑞𝑖𝑗 =

(
1 + ‖𝒚𝑖 − 𝒚𝑗‖

2
)−1

∑
𝑘
∑

𝑙≠𝑘
(
1 + ‖𝒚𝑘 − 𝒚𝑙‖2

)−1

• The cost 𝐶 is the KL divergence: 𝐶 = 𝐷KL(𝑃,𝑄) =
∑

𝑖
∑

𝑗 𝑝𝑖𝑗 log
𝑝𝑖𝑗
𝑞𝑖𝑗

• t-SNE finds low-dimensional 𝒚1,𝒚2,… ,𝒚𝑁 that minimizes the cost 𝐶
– The gradient descent can be used for optimization

𝜕𝐶
𝜕𝒚𝑖

= 4
∑

𝑗
(𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝒚𝑖 − 𝒚𝑗)

(
1 + ‖𝒚𝑖 − 𝒚𝑗‖

2
)−1
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Summary
• Feature selection can find relevant variables (features)

– Filter method, wrapper method, embedded method
• The Lasso is the representative embedded method
• t-SNE is the representative dimension reduction method
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