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Single-layered Perceptron

The basic formulation of a single-layered perceptron is
𝑓 𝒙 = 𝜃 𝒘𝒙 + 𝒃

Where 𝒙 is the input, 𝒘 is the learnt weights and 𝒃 is the bias.

𝜃 is a non-linearity.

In the original formulation of the perceptron, 𝜃 is a step-function.

Representational Power: can learn any linearly separable collection of
N binary labels provided that the size of the input 𝒙 is greater than N.

Σ θ

Slide 2 of 14



Multi-layered Perceptron (MLP)

Starting from the multi-classification perceptron, chain perceptrons
layer-wise.

Adjust the weights using backpropagation.

Historically MLP tackled the XOR learning problem which the single-
layered perceptron cannot handle.

It is often a building block in modern Graph Neural Networks.
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Fixed Assumptions in MLP

There are no intra-layer connections,

instead all connections are inter-layer.

The aggregation of the signal happens via summation.

Each neuron holds only a scalar value.

Each update only depends on the neurons in the following layer.
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Relaxing the Assumptions

Allow arbitrary edges.

Allow signal aggregation to happen via other methods:

maximum, minimum, summation, median, average.

Allow each neuron/node to have a vector representation.

Consider the current state of a node when updating the representation.
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Graph Prediction Tasks

• Node level
• Community detection, Node classification, Node representation learning.

• Edge level
• Relationship learning, operator learning:

e.g. collaboration/co-author prediction, scene narrative graph

• Graph level
• Graph classification:

e.g. drug prediction/discovery

𝒢

n
e
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A Simple Graph Neural Network

Consider a graph 𝒢(𝒩,ℰ), where at each node n ∈ 𝒩 and each edge e
∈ ℰ, we have an associated vector vₙ, respectively vₑ, representing the
node (respectively edge).

A simple Graph Neural Network, takes the graph 𝒢 and associates with
each node/edge an MLP whose output is then used for
node/edge/graph classification tasks.

MLPₙ := vₙ → fₙ

MLPₑ := vₑ → fₑ

MLP𝒢 := (fₙ,fₑ) → f 𝒢

𝒢

n
e
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End-to-End Example of a GNN

Input Graph Transformed GraphGNN Blocks Classifier Prediction

Y
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Message Passing

Let’s add graph structure into the learning algorithm.

We do so in the following steps:

1. For each node n ∈ 𝒢 where N(n) are the nodes neighbouring n,
form the set U = {vₙ’ ∣ n’ ∈ N(n)};

2. Apply an aggregation function that reduces the set U to a single
vector v’ₙ;

3. Apply an update function f: (vₙ,v’ₙ) → vₙ.

(For edges, consider the dual graph and apply the above)
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Message Passing

[1,0,2,3,1]
[0,1,1,2,1]
[0,0,1,1,1]

       [1,1,4,6,3]

+

f

[1,0,1,2,2]

Layer N
Layer N+1
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Representational Power

Theorem 1 †(R. Sato, 2020): For any message passing GNN and for any
graphs 𝒢 and ℋ, if the 1-WL algorithm outputs that 𝒢 and ℋ are
“possibly isomorphic”, the vector representations associated with each
node and edge in 𝒢 and ℋ are the same.

Note: k-WL first “gathers” the labels of all nodes in a neighbourhood,
and then hashes this set to obtain a new label, it outputs “possibly
isomorphic” if after k steps, if the set of all neighbourhood label sets
are the same.
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https://archive.is/o/jsNg8/https:/arxiv.org/abs/2003.04078


Short-comings and Current Research

Focusing primarily on Message Passing GNNs, there are two main
short-comings associated:

Oversmoothing: As the number of GNN layers is increased, the vector
representation of nodes and edges tends to a uniform distribution.

Oversquashing: Under certain (often common) graph configurations,
information loss occurs as a single node has to encode updates from an
exponentially large neighbourhood.
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Common Methods to Alleviate
Oversmoothing and Oversquashing
For oversmoothing:

Regularise and add noise to node level features

Residual connections

Reduce model depth

For oversquashing:

Increase model depth

Master node/Fully connected graph

Graph rewiring

Hierarchical message passing/Overlay networks
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Fin
Questions?
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