Mar. 18, 2025 FDIG2025

Inter-University Research Institute Corporation / Research Organization of Information and Systems

National Institute of Informatics

A Unified Information Geometric Perspective on Machine Learning in Structured Spaces

Mahito Sugiyama (NII) https://mahito.nii.ac.jp/

Nonnegative Tensor Decomposition

- Low-rank decomposition is commonly used in analysis of multi-dimensional arrays such as matrices and tensors
 - Approximate them by a linear combination of bases
 - Tune the number of bases (called rank) as a hyper-parameter

Many-Body Approximation for Tensors

Ghalamkari, Sugiyama, & Kawahara, **Many-body Approximation for Non-negative Tensors**, NeurIPS2023 [Code (Julia)] [Code (Python)] 2/30

Application to Images

a. Up to four-body

b. Up to three-body

When the interaction between d. colors and image indices is removed... 1 2 3

Properties and Related Work

- Optimization is always convex
- Generalization of Boltzmann machines
- Linear algebraic operations can be achieved by identifying a sample space with a tensor
 - Fast balancing [Sugiyama et al. ICML2017]
 - Legendre decomposition [Sugiyama et al. NeurIPS2018]
 - Fast and stable tensor low-rank approximation
 [Ghalamkari & Sugiyama, NeurIPS2021, Info.Geo. (2023)]
- An application to quantum chemistry calculations [Hagai et al. Digital Discovery (2023)]

Itemset Mining

The set of itemsets (itemset lattice)

Frequency as Importance Measure

Probability Distribution on Itemset Lattice

Itemset Mining

$\textbf{Itemset Mining} \rightarrow \textbf{Upward Analysis}$

Boltzmann Machines

The set of itemsets (itemset lattice)

Boltzmann Machines \rightarrow Downward Analysis

Itemset Mining & Boltzmann Machines

Information Geometric Understanding

Partially Ordered Set

- Partially ordered set (poset) (S, \leq)
 - (i) $x \le x$ (reflexivity)
 - (ii) $x \le y, y \le x \Rightarrow x = y$ (antisymmetry)
 - (iii) $x \le y, y \le z \Rightarrow x \le z$ (transitivity)
 - We assume that *S* is finite and $\bot \in S$
- Equivalent to a DAG
 - Each $x \in S$ is a node
 - $x \le y \iff y$ is reachable from x
- Itemset lattice is a poset, where " \leq " is " \subseteq "

Zeta and Möbius Functions

- Zeta function $\zeta : S \times S \rightarrow \{0, 1\}$ $\zeta(s, x) = \begin{cases} 1 & \text{if } s \leq x, \\ 0 & \text{otherwise.} \end{cases}$
 - (integral)
- Möbius function $\mu = \zeta^{-1}$
 - $\zeta \mu = \delta$, where $\delta_{xy} = 1$ if x = y and $\delta_{xy} = 0$ otherwise - (differential)
- Incidence algebra is induced

The Log-Linear Model on Posets

Sugiyama, Nakahara & Tsuda, **Tensor Balancing on Statistical Manifold**, ICML2017 16/30

Mixed Coordinate System

• Many problems are formulated as coordinate mixing

$$P = (\theta_1, \theta_2, ..., \theta_{i-1}, \theta_i, \theta_{i+1}, ..., \theta_n) = e-\text{projection}$$

$$Q = (\eta_1, \eta_2, ..., \eta_{i-1}, \theta_i, \theta_{i+1}, ..., \theta_n) = m-\text{projection}$$

$$R = (\eta_1, \eta_2, ..., \eta_{i-1}, \eta_i, \eta_{i+1}, ..., \eta_n) = m-\text{projection}$$

Pythagorean theorem: (Q is always unique) KL(P, R) = KL(P, Q) + KL(Q, R)

Mixed Coordinate System (Example)

• Many problems are formulated as coordinate mixing

$$P = (0, 0, ..., 0, 0, 0, 0, ..., 0) → Uniform dist.
$$Q = (\hat{\eta}_{1}, \hat{\eta}_{2}, ..., \hat{\eta}_{i-1}, 0, 0, ..., 0))$$

$$R = (\hat{\eta}_{1}, \hat{\eta}_{2}, ..., \hat{\eta}_{i-1}, \hat{\eta}_{i}, \hat{\eta}_{i+1}, ..., \hat{\eta}_{n}) → Empirical dist.$$
Pythagorean theorem: (Q is always unique)

$$KL(P, R) = KL(P, Q) + KL(Q, R)$$$$

18/30

Two Submanifolds

Boltzmann Machine Training

From Itemset Lattices to Tensors

The number of features = The number of modes

Any Tensor Can Be Treated

Any Tensor Can Be Treated

Rank-1 (or One-Body) Approximation

Set all θ to be 0 except for corners
⇒ • Rank-1 best approximation
• Mean-field approximation

A closed form solution is available (gradient method is not needed)

Apply rank-1 approximation to sub-tensors

⇒ Any low-rank approximation is achieved without a gradient method

Formulation of Many-body Approximation

• We explicitly model associations between features/modes (no latent variables, hence convex)

• This belongs to the energy-based model, or the exponential family

24/30

"Addition" with Latent Variables [Ghalamkari et al. AAAI2025WS]

25/30

Blind Source Separation [Luo et al. UAI2021]

RMSE: 0.252±0.000 0.260±0.111 0.362±0.030 0.612±0.000

Mixed Coordinates for BBS

Data Argumentation [Hu & Sugiyama, arXiv:2410.00718]

Refined Information [Enouen&Sugiyama,arXiv:2410.11964]

Refined information of mode (feature) interactions for tabular data

Refined Information (log) v. Mode Interaction

 $\mathrm{RI}_{\mathcal{I} \to \mathcal{J}}(p) = \mathrm{KL}(p; p_{\mathcal{I}}) - \mathrm{KL}(p; p_{\mathcal{I}})$

Summary

- Probabilistic modeling with discrete structure
 - The log-linear model on posets
 - Fundamental concept from various fields: incidence algebra from order theory, frequency in pattern mining, parameters in Boltzmann machines, (θ, η) coordinates in information geometry, ...
- In tensor decomposition, we can treat each feature explicitly
 - e.g. decompose (A, B, C) into the product of (A, B), (B, C), and (C, A)
 - This has not been achieved by (low) rank-based approaches
 - Some relationship to tensor-and-circuites?
 - o AAAI2025 WS: https://april-tools.github.io/colorai/
- Slide: https://mahito.nii.ac.jp/pdf/FDIG2025.pdf_{30/30}