

Introduction

We found the formula of the best rank-1 factor sharing NMF w.r.t. minimizing KL divergence.

- We developed a non-gradient-based rank-1 NMF method with missing values based on the formula.
- Rank-1 Non-negative Multiple Matrix Factorization _____ For given **X**, **Y** and **Z**, rank-1 NMMF (non-negative multiple matrix factorization) finds *a*, *b*, *w* and *h* to minimize $D(\mathbf{X}, \boldsymbol{w} \otimes \boldsymbol{h}) + \alpha D(\mathbf{Y}, \boldsymbol{a} \otimes \boldsymbol{h}) + \beta D(\mathbf{Z}, \boldsymbol{w} \otimes \boldsymbol{b})$.

Rank-1 NMF with Missing Values.

Main Result.

The best rank-1 NMMF of **X**, **Y** and **Z** is given as

$$w_{i} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \beta S(\mathbf{Z})} \left\{ \sum_{j} \mathbf{X}_{ij} + \sum_{m} \beta \mathbf{Z}_{im} \right\}, \ a_{n} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i} \mathbf{X}_{ij} + \sum_{n} \alpha \mathbf{Y}_{nj} \right\}, \ b_{m} = \frac{\sqrt{S(\mathbf{X})}$$

 $S(\mathbf{X})$ is sum of all elements of \mathbf{X} .

Fast Rank-1 NMF for Missing Data with KL Divergence Kazu Ghalamkari^{1,2}, Mahito Sugiyama^{1,2}

¹National Institute of Infomatics @ Tokyo, Japan ²The Graduate University for Advanced Studies, SOKENDAI The 25th International Conference on Artificial Intelligence and Statistics (AISTATS 2022), March 28–30, 2022

Matrices

Log-linear model on poset:

 $\eta_{kl} = \sum p(s,t) \quad p(k,l) = \exp \left[\sum \theta_{st} \right]$ $(k,l) \leq (s,t)$

Index set of the poset is the sample space. Information Geometry of Rank-1 NMMF_ (X,Y,Z) is simultaneously rank-1 decomposable. \Leftrightarrow It can be written as $(w \otimes h, a \otimes h, w \otimes b)$. Simultaneous Rank-1 η -condition

 $\eta_{ij} = \eta_{i1}\eta_{1j}$

Simultaneous Rank-1 **0**-condition Its all two-body θ -parameters are 0.

One-body η -parameters do not change before or after the projection.

 θ_{1i}

Probability on a poset One-body parameter O Two-body parameter $(s,t) \leq (k,l)$

(X,Y,Z) $D(\mathbf{X}, \boldsymbol{w} \otimes \boldsymbol{h})$ $+D(\mathbf{Y}, \boldsymbol{a} \otimes \boldsymbol{h}) + D(\mathbf{Z}, \boldsymbol{w} \otimes \boldsymbol{b})$ $/(w \otimes h, a \otimes h, w \otimes b)/$ Simultaneous rank-1 subspace \mathbf{Q}

Faster Rank-1 NMF with Missing Values _____

A1GM is a non-gradient-based method. Step1: Increase the number of missing values. Step2: Gather missing values in the bottom right.

Input							
2	3	3	1	4			
3	4	1	\bigotimes	1			
3	9	1	1	3			
5	\bigotimes	3	4	1			
1	4	2	2	3			

Experiments on Real Data

- Our method is compared with gradient-based KL-WNMF. - Relative runtime < 1 means A1GM is faster than KL-WNMF. - Relative error > 1 means worse reconstruction error of A1GM than KL-WNMF.

size	# missing values	increase rate	relative error	relative runtime
(73718, 9)	3247	1	1	0.12845
(20640, 9)	207	1	1	0.11821
(1533078, 4)	1247722	1	1	0.18327
(8522, 5)	1463	1	1	0.12699
(590, 7)	25	1.92	1.0018	0.12212
(14999, 7)	519	1.96146	1.0168	0.11858
(33656, 14)	16585	2.61345	1.0004	0.15382
(62, 8)	12	2.75	1.0211	0.18208
(506, 14)	120	5.6	1.003	0.1097
	size (73718, 9) (20640, 9) (1533078, 4) (8522, 5) (590, 7) (14999, 7) (33656, 14) (62, 8) (506, 14)	size $\#$ missing values(73718, 9)3247(20640, 9)207(1533078, 4)1247722(8522, 5)1463(590, 7)25(14999, 7)519(33656, 14)16585(62, 8)12(506, 14)120	size $\#$ missing valuesincrease rate(73718, 9)32471(20640, 9)2071(1533078, 4)12477221(8522, 5)14631(590, 7)251.92(14999, 7)5191.96146(33656, 14)165852.61345(62, 8)122.75(506, 14)1205.6	size $\#$ missing valuesincrease raterelative error(73718, 9)324711(20640, 9)20711(1533078, 4)124772211(8522, 5)146311(8522, 5)146311(8590, 7)251.921.0018(14999, 7)5191.961461.0168(33656, 14)165852.613451.0004(62, 8)122.751.0211(506, 14)1205.61.003

Increase rate is the ratio of # missing values after addition of missing values at step1.

NMMF can be viewed as a special case of NMF with missing values.

- A1GM: Proposed Method for Rank-1 NMF with Missing Values.

No worries about initial values, stopping criterion, and learning rate \bigoplus .

- Step3: Use the formula of rank-1 NMMF and repermutate.

Much faster!!