

Non-negative low-rank approximations for multi-dimensional arrays on statistical manifold

Kazu Ghalamkari^{1,2}, Mahito Sugiyama^{1,2}

- 1 : The Graduate University for Advanced Studies, SOKENDAI
- 2 : National Institute of Informatics

International Conference on Information Geometry for Data Science (IG4DS 2022)

Motivation

□ Non-negative low-rank_approximation of data with various structures

Approximates with a linear combination of fewer bases (principal components) for feature extraction, memory reduction, and pattern discovery.

Motivation

□ Non-negative low-rank_approximation of data with various structures

Approximates with a linear combination of fewer bases (principal components) for feature extraction, memory reduction, and pattern discovery.

Non-negative constraint improves interpretability

Motivation

□ Non-negative low-rank approximation of data with various structures

Approximates with a linear combination of fewer bases (principal components) for feature extraction, memory reduction, and pattern discovery.

Non-negative constraint improves interpretability

Low-rank approximation with non-negative constraints are based on gradient methods. \rightarrow Appropriate settings for stopping criteria, learning rate, and initial values are necessary P

Contribution

Information Geometric Analysis using Distributions on DAGs that Correspond to Data Structures

□ LTR: Faster Tucker-rank Reduction

Contribution

Information Geometric Analysis using Distributions on DAGs that Correspond to Data Structures

□ LTR: Faster Tucker-rank Reduction

No worries about initial values, stopping criterion and learning rate 😂

Contribution

Information Geometric Analysis using Distributions on DAGs that Correspond to Data Structures

 \Box LTR: Faster Tucker-rank Reduction \Box A1GM: Faster rank-1 missing NMF

Missing value

Find the most dominant factor rapidly. Solve the task as a coupled NMF.

No worries about initial values, stopping criterion and learning rate

Contents

Motivation, Strategy, and Contributions

□ Introduction of log-linear model on DAG

Theoretical Remarks

Conclusion

Modeling tensor and matrix

□ Flexible modeling is required to capture the structure of various data

2	3	3	1	4
3	4	1	3	1
3	9	1	1	3
5	5	3	4	1
1	4	2	2	3

Formulate low-rank approximations with probabilistic models on DAGs

Log-linear model on Directed Acyclic Graph (DAG)

DAG(poset) S is a DAG \Leftrightarrow for all $s_1, s_2, s_3 \in S$ the following three properties are satisfied.

(1) **Reflexivity** : $s_1 \le s_1$ (2) **Antisymmetry**: $s_1 \le s_2, s_2 \le s_1 \Rightarrow s_1 = s_2$ (3)**Transitivity**: $s_1 \le s_2, s_2 \le s_3 \Rightarrow s_1 \le s_3$

Log-linear model on Directed Acyclic Graph (DAG)

DAG(poset) S is a DAG \Leftrightarrow for all $s_1, s_2, s_3 \in S$ the following three properties are satisfied.

(1) **Reflexivity** : $s_1 \le s_1$ (2) **Antisymmetry**: $s_1 \le s_2, s_2 \le s_1 \Rightarrow s_1 = s_2$ (3)**Transitivity**: $s_1 \le s_2, s_2 \le s_3 \Rightarrow s_1 \le s_3$

$\hfill\square$ log-linear model on DAG

We define the log-linear model on a DAG S as a mapping $p: S \to (0,1)$. Natural parameters θ describe the model. $p_{\theta}(x) = \exp\left(\sum_{s \le x} \theta(s)\right), x \in S$

Mahito Sugiyama, Hiroyuki Nakahara and Koji Tsuda "Tensor balancing on statistical manifold⁴(2017) ICML

Log-linear model on Directed Acyclic Graph (DAG)

DAG(poset) S is a DAG \Leftrightarrow for all $s_1, s_2, s_3 \in S$ the following three properties are satisfied.

(1) **Reflexivity** : $s_1 \le s_1$ (2) **Antisymmetry**: $s_1 \le s_2, s_2 \le s_1 \Rightarrow s_1 = s_2$ (3)**Transitivity**: $s_1 \le s_2, s_2 \le s_3 \Rightarrow s_1 \le s_3$

$\hfill\square$ log-linear model on DAG

We define the log-linear model on a DAG S as a mapping $p: S \to (0,1)$. Natural parameters θ describe the model. $p_{\theta}(x) = \exp\left(\sum_{s \le x} \theta(s)\right), x \in S$

We can also describe the model by **expectation parameters** η with Möbius function.

Contents

Motivation, Strategy, and Contributions
 Introduction of log-linear model on DAG

\Box The best rank-1 approximation formula	The best rank-1 NMMF
Legendre Tucker-Rank Reduction(LTR)	□A1GM: faster rank-1 missing NMF
github.com/gkazunii/Legendre-tucker-rank-reduction	github.com/gkazunii/A1GM

□ Theoretical Remarks

Conclusion

Introducing DAGs for Tensor

$$\sum_{i,j,k} \mathcal{P}_{ijk} = 1$$

Introducing DAGs for Tensor

Introducing DAGs for Tensor

$$p(k,l,m) = \exp\left(\sum_{(s,t,u) \leq (k,l,m)} \theta_{stu}\right),$$

$$\eta_{klm} = \sum_{(k,l,m) \leq (s,t,u)} p(s,t,u).$$

 $p_{\theta}(1,2,2) = \exp(\theta_{111} + \theta_{112} + \theta_{121} + \theta_{122}),$

$$\begin{split} \mathfrak{P}_{122} &= p_{\theta}(1,2,2) = \exp(\theta_{111} + \theta_{112} + \theta_{121} + \theta_{122}), \\ \mathfrak{P}_{122} &= p_{\eta}(1,2,2) = \eta_{122} - \eta_{222} - \eta_{123} - \eta_{132} + \eta_{232} + \eta_{133} + \eta_{223} - \eta_{233} \end{split}$$

 $\mathcal{P}_{122} = p_{\eta}(1, 2, 2) = \eta_{122} - \eta_{222} - \eta_{123} - \eta_{132} + \eta_{232} + \eta_{133} + \eta_{223} - \eta_{233}$

 <u>Relation between</u> 	distribution and tensor
Random variables Sample space Probability values	 <i>i</i>, <i>j</i>, <i>k</i>, indices of the tensor index set tensor values <i>P</i>_{ijk}

One-body and many-body parameters

One-body parameter O Many-body parameter

One-body parameter O Many-body parameter

One-body parameter O Many-body parameter

We can find the projection destination by a gradient-method.

But gradient-methods require Appropriate settings for stopping criteria, learning rate, and initial values 😰

We can find the projection destination by a gradient-method.

But gradient-methods require Appropriate settings for stopping criteria, learning rate, and initial values 😰

• Let us describe the rank-1 condition with the η -parameter.

30

One-body parameter Many-body parameter

 η_{ijk} : η -parameter before the projection. $\overline{\eta}_{ijk}$: η -parameter after the projection.

 η_{ijk} : η -parameter before the projection.

 $\overline{\eta}_{ijk}$: η -parameter after the projection.

The *m*-projection does not change one-body η -parameter

Shun-ichi Amari, Information Geometry and Its Applications, 2008, Theorem 11.6

Find the best rank-1 approximation

One-body parameter O Many-body parameter

 η_{ijk} : η -parameter before the projection. $\overline{\eta}_{ijk}$: η -parameter after the projection.

Find the best rank-1 approximation

One-body parameter One-body parameter

 η_{ijk} : η -parameter before the projection. $\overline{\eta}_{ijk}$: η -parameter after the projection.

Mean-field approximation and rank-1 approximation

Best rank-1 tensor formula for minimizing KL divergence (d = 3)

The best rank-1 approximation of $\mathcal{P} \in \mathbb{R}_{>0}^{I \times J \times K}$ is given as

$$\overline{\mathcal{P}}_{ijk} = \left(\sum_{j'=1}^{J}\sum_{k'=1}^{K}\mathcal{P}_{ij'k'}\right) \left(\sum_{k'=1}^{K}\sum_{i'=1}^{I}\mathcal{P}_{i'jk'}\right) \left(\sum_{i'=1}^{I}\sum_{j'=1}^{J}\mathcal{P}_{i'j'k}\right)$$

which minimizes KL divergence from \mathcal{P} .

We reproduce the result in K.Huang, et al. "Kullback-Leibler principal component for tensors is not NP-hard." ACSSC 2017

Mean-field approximation and rank-1 approximation

Best rank-1 tensor formula for minimizing KL divergence (d = 3) –

The best rank-1 approximation of $\mathcal{P} \in \mathbb{R}_{>0}^{I \times J \times K}$ is given as

$$\overline{\mathcal{P}}_{ijk} = \left(\sum_{j'=1}^{J}\sum_{k'=1}^{K}\mathcal{P}_{ij'k'}\right) \left(\sum_{k'=1}^{K}\sum_{i'=1}^{I}\mathcal{P}_{i'jk'}\right) \left(\sum_{i'=1}^{I}\sum_{j'=1}^{J}\mathcal{P}_{i'j'k}\right)$$

By the way, Frobenius error minimization is **NP-hard**

which minimizes KL divergence from \mathcal{P} .

We reproduce the result in K.Huang, et al. "Kullback-Leibler principal component for tensors is not NP-hard." ACSSC 2017

A tensor with *d* indices is a joint distribution with *d* random variables. A vector with only 1 index is an independent distribution with only one random variable.

A tensor with *d* indices is a joint distribution with *d* random variables. A vector with only 1 index is an independent distribution with only one random variable.

Rank-1 approximation approximates a joint distribution by a product of independent distributions.

Mean-field approximation : a methodology in physics for reducing a many-body problem to a one-body problem.

MFA of Boltzmann-machine

$$p(\mathbf{x}) = \frac{1}{Z(\boldsymbol{\theta})} \exp\left[\sum_{i} \theta_{i} x_{i} + \sum_{i < j} \theta_{ij} x_{i} x_{j}\right] \qquad \eta_{i} = \sum_{x_{1}=0}^{1} \cdots \sum_{x_{n=0}}^{1} x_{i} p(\mathbf{x})$$

Bias Interaction

MFA of Boltzmann-machine

MFA of Boltzmann-machine

$$p(\mathbf{x}) = \frac{1}{Z(\boldsymbol{\theta})} \exp\left[\sum_{i} \theta_{i} x_{i} + \sum_{i < j} \theta_{ij} x_{i} x_{j}\right] \qquad \eta_{i} = \sum_{x_{1}=0}^{1} \cdots \sum_{x_{n=0}}^{1} x_{i} p(\mathbf{x})$$

Bias Interaction

	Minimizing KL divergence	Minimizing inverse-KL divergence
	<i>m</i> -projection	e-projection
Mean-field Approximation of BM Projection onto <i>e</i> -flat space	impossible $O(2^n)$ unique	$\eta_{i} = \sigma \left(\theta_{i} + \sum_{k} \theta_{kj} \eta_{k} \right)$ not unique
Rank-1 approximation Projection onto <i>e</i> -flat space	Closed-formula unique	4

Contents

Motivation, Strategy, and Contributions
 Introduction of log-linear model on DAG

The best rank-1 approximation formula	The best rank-1 NMMF
Legendre Tucker-Rank Reduction(LTR)	□A1GM: faster rank-1 missing NMF
github.com/gkazunii/ Legendre-tucker-rank-reduction	github.com/gkazunii/A1GM

□ Theoretical Remarks

Conclusion

Rank-1 condition (θ -representation)

 $rank(\mathcal{P}) = 1 \Leftrightarrow$ its all many – body θ parameters are 0

Expand the tensor by focusing on the *m*-th axis into a rectangular matrix $\theta^{(m)}$ (mode-*m* expansion)

Rank-1 condition (*θ*-representation)

 $rank(\mathcal{P}) = 1 \iff its all many - body \theta$ parameters are 0

Expand the tensor by focusing on the *m*-th axis into a rectangular matrix $\theta^{(m)}$ (mode-*m* expansion)

$$\theta^{(1)} = \begin{bmatrix} \theta_{111} & \theta_{121} & \theta_{131} & \theta_{112} & 0 & 0 & \theta_{113} & 0 & 0 \\ \theta_{211} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \theta_{311} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\theta^{(2)} = \begin{bmatrix} \theta_{111} & \theta_{211} & \theta_{311} & \theta_{112} & 0 & 0 & \theta_{311} & 0 & 0 \\ \theta_{121} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \theta_{131} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\theta^{(3)} = \begin{bmatrix} \theta_{111} & \theta_{211} & \theta_{311} & \theta_{121} & 0 & 0 & \theta_{131} & 0 & 0 \\ \theta_{112} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Rank (1,1,1)

Rank-1 condition (*θ*-representation)

 $rank(\mathcal{P}) = 1 \iff$ its all many – body θ parameters are 0

Expand the tensor by focusing on the *m*-th axis into a rectangular matrix $\theta^{(m)}$ (mode-*m* expansion)

Rank (1,1,1)

Rank (1,1,1)

The relationship between bingo and rank

$$\theta^{(1)} = \begin{bmatrix} \theta_{111} & \theta_{121} & \theta_{131} & \theta_{112} & 0 & 0 & \theta_{113} & 0 & 0 \\ \theta_{211} & \frac{0}{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \theta_{321} & \theta_{331} & \theta_{312} & \theta_{322} & \theta_{332} & \theta_{313} & \theta_{323} & \theta_{333} \end{bmatrix} \rightarrow \text{One bingo}$$

$$\theta^{(2)} = \begin{bmatrix} \theta_{111} & \theta_{211} & \theta_{311} & \theta_{112} & 0 & \theta_{312} & \theta_{311} & 0 & \theta_{313} \\ \theta_{121} & 0 & \theta_{321} & 0 & 0 & \theta_{322} & 0 & 0 & \theta_{323} \\ \theta_{131} & 0 & \theta_{331} & 0 & 0 & \theta_{332} & 0 & 0 & \theta_{333} \end{bmatrix} \text{ No bingo}$$

$$\theta^{(3)} = \begin{bmatrix} \theta_{111} & \theta_{211} & \theta_{311} & \theta_{121} & 0 & \theta_{321} & \theta_{131} & 0 & \theta_{331} \\ \theta_{112} & 0 & \theta_{312} & 0 & 0 & \theta_{322} & 0 & 0 & \theta_{332} \\ \theta_{133} & 0 & \theta_{313} & 0 & 0 & \theta_{322} & 0 & 0 & \theta_{333} \end{bmatrix} \text{ No bingo}$$

$$\text{Rank} (2,3,3)$$

The relationship between bingo and rank

The relationship between bingo and rank

Bingo rule (d = 3 **)**

The mode-*k* expansion $\theta^{(k)}$ of the natural parameter of a tensor $\mathcal{P} \in \mathbb{R}_{>0}^{I_1 \times I_2 \times I_3}$ has b_k bingos $\Rightarrow \operatorname{rank}(\mathcal{P}) \le (I_1 - b_1, I_2 - b_2, I_3 - b_3)$

STEP1 : Choose a bingo location.

54

- STEP1 : Choose a bingo location.
- STEP2 : Replace the bingo part with the best rank-1 tensor.

The shaded areas do not change their values in the projection.

- STEP1 : Choose a bingo location.
- STEP2 : Replace the bingo part with the best rank-1 tensor.

Replace the partial tensor in the red box using the best rank-1 approximation formula

- STEP1 : Choose a bingo location.
- STEP2 : Replace the bingo part with the best rank-1 tensor.

Replace the partial tensor in the red box using the best rank-1 approximation formula

- STEP1 : Choose a bingo location.
- STEP2 : Replace the bingo part with the best rank-1 tensor.

Replace the partial tensor in the red box using the best rank-1 approximation formula

The best tensor is obtained in the specified bingo space. \textcircled There is no guarantee that it is the best rank (5,8,3) approximation.

 $(\tilde{\boldsymbol{x}})$

- STEP1 : Choose a bingo location.
- STEP2 : Replace the bingo part with the best rank-1 tensor.

The shaded areas do not change their values in the projection.

Experimental results (synthetic data)

LTR is faster with the competitive approximation performance.

Experimental results (real data)

LTR is faster with the competitive approximation performance.

Contents

Motivation, Strategy, and Contributions
 Introduction of log-linear model on DAG

The best rank-1 approximation formula	The best rank-1 NMMF
Legendre Tucker-Rank Reduction(LTR)	□A1GM: faster rank-1 missing NMF
github.com/gkazunii/ Legendre-tucker-rank-reduction	github.com/gkazunii/A1GM

□ Theoretical Remarks

Conclusion

Strategy for rank-1 NMF with missing values

 \Box Collect missing values in a corner of matrix to solve as coupled NMF

Missing value

 $D(\Phi \circ \mathbf{X}, \Phi \circ (\boldsymbol{w} \otimes \boldsymbol{h}))$ Element-wise product $\Phi_{ij} = \begin{cases} 0 & \text{If } \mathbf{X}_{ij} \text{ is missing} \\ 1 & \text{otherwise} \end{cases}$

Strategy for rank-1 NMF with missing values

\Box Collect missing values in a corner of matrix to solve as coupled NMF

NMMF (Takeuchi et al., 2013)

 $D(\Phi \circ \mathbf{X}, \Phi \circ (\boldsymbol{w} \otimes \boldsymbol{h}))$ Element-wise product $\Phi_{ij} = \begin{cases} 0 & \text{If } \mathbf{X}_{ij} \text{ is missing} \\ 1 & \text{otherwise} \end{cases}$

NMMF, Nonnegative multiple matrix factorization (Takeuchi et al., 2013)

 $D(\mathbf{X}, w \otimes h) + \alpha D(\mathbf{Y}, a \otimes h) + \beta D(\mathbf{Z}, w \otimes b)$

The best rank-1 approximation of NMMF

 $D(\mathbf{X}, w \otimes h) + \alpha D(\mathbf{Y}, a \otimes h) + \beta D(\mathbf{Z}, w \otimes b)$

The best rank-1 approximation of NMMF

For given $X \in \mathbb{R}^{I \times J}_{>0}$, $Y \in \mathbb{R}^{N \times J}_{>0}$, and $Z \in \mathbb{R}^{I \times M}_{>0}$ the best rank-1 NMMF is given as

$$w_{i} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \beta S(\mathbf{Z})} \left\{ \sum_{j=1}^{J} \mathbf{X}_{ij} + \beta \sum_{m=1}^{M} \mathbf{Z}_{im} \right\} \qquad a_{n} = \frac{\sum_{j=1}^{J} \mathbf{Y}_{nj}}{\sqrt{S(\mathbf{X})}}$$
$$h_{j} = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i=1}^{I} \mathbf{X}_{ij} + \alpha \sum_{n=1}^{N} \mathbf{Y}_{nj} \right\} \qquad b_{m} = \frac{\sum_{i=1}^{I} \mathbf{Z}_{im}}{\sqrt{S(\mathbf{X})}}$$

 $S(\mathbf{X})$ is sum of all elements of \mathbf{X} .

Modeling of NMMF

One-body and many-body parameters

(X, Y, Z) is simultaneously rank-1 decomposable. \Leftrightarrow It can be written as $(w \otimes h, a \otimes h, w \otimes b)$. **One-body** parameter **Two-body** parameter

Information geometry of rank-1 NMMF

(X, Y, Z) is simultaneously rank-1 decomposable. \Leftrightarrow It can be written as $(w \otimes h, a \otimes h, w \otimes b)$. **One-body** parameter **O Two-body** parameter θ_{12} θ_{13} θ_{14} θ_{15} θ_{16} θ_{11} Simultaneous Rank-1 θ -condition \bullet (X,Y,Z) θ_{ii} θ_{21} 0 0 $D(\mathbf{X}, \boldsymbol{w} \otimes \boldsymbol{h})$ Its all two-body θ -parameters are 0. + $D(\mathbf{Y}, \boldsymbol{a} \otimes \boldsymbol{h})$ + $D(\mathbf{Z}, \boldsymbol{w} \otimes \boldsymbol{b})$ θ_{31} 0 0 0 0 $\bullet \theta_{i1}$ θ_{41} $\langle (w \otimes h, a \otimes h, w \otimes b) \rangle$ θ_{51} 0 Simultaneous rank-1 subspace Q $\theta_{1i}^{\not k}$

 θ_{61}

Information geometry of rank-1 NMMF

(X, Y, Z) is simultaneously rank-1 decomposable. \Leftrightarrow It can be written as $(w \otimes h, a \otimes h, w \otimes b)$. **One-body** parameter **Two-body** parameter

Simultaneous Rank-1 θ -condition

Its all two-body θ -parameters are 0.

Simultaneous Rank-1 η -condition

 $\eta_{ij} = \eta_{i1}\eta_{1j}$

Find the global optimal solution of rank-1 NMMF

(X, Y, Z) is simultaneously rank-1 decomposable. \Leftrightarrow It can be written as $(w \otimes h, a \otimes h, w \otimes b)$. **One-body** parameter **Two-body** parameter

The *m*-projection does not change one-body η -parameter Shun-ichi Amari, Information Geometry and Its Applications, 2008, Theorem 11.6

Find the global optimal solution of rank-1 NMMF

(X, Y, Z) is simultaneously rank-1 decomposable. \Leftrightarrow It can be written as $(w \otimes h, a \otimes h, w \otimes b)$. **One-body** parameter **Two-body** parameter

The *m*-projection does not change one-body η -parameter Shun-ichi Amari, Information Geometry and Its Applications, 2008, Theorem 11.6

All η -parameters after the projection are identified.
Rank-1 NMF with missing values

□ NMMF can be viewed as a special case of NMF with missing values.

Rank-1 NMF with missing values

□ NMMF can be viewed as a special case of NMF with missing values.

□ NMF is homogeneous for row and column permutations

A1GM: Algorithm

- **Step 1** : Gather missing values in the bottom right.
- Step 2 : Use the formula of the best rank-1 NMMF.
- Step 3 : Repermutate

Examples that permutations cannot collect missing values into corners

	2	3	3	1	4
	3	4	1	\bigotimes	1
l	3	9	1	1	3
ſ	5	\bigotimes	3	4	1
ſ	1	4	2	2	3

2	3	3	1	4
3	4	1	5	1
3	9	\bigotimes	1	\bigotimes
5	2	3	4	1
1	4	\bigotimes	\bigotimes	3

\bigotimes	3	3	1	4
3	4	1	5	1
3	9	\bigotimes	1	3
5	2	3	4	1
\bigotimes	4	2	2	3

2	3	3	1	\bigotimes
3	4	1	5	1
3	9	\bigotimes	1	3
5	\bigotimes	3	4	1
1	4	2	2	3

Add missing values to solve the problem as NMMF

Add missing values to solve the problem as NMMF

Reconstruction error worsens 😰

Add missing values to solve the problem as NMMF

Reconstruction error worsens

Gain in efficiency 😛

Data that A1GM is good at and not good at

Missing values are evenly distributed in each row and column.

Data that A1GM is good at and not good at

A Missing values are evenly distributed in each row and column.

🕙 Missing are heavily distributed in certain rows and columns.

5

Missing values tend to be in certain columns in some real datasets. ex) disconnected sensing device, optional answer field in questionnaire form

A1GM: Algorithm

Step 1 : Increase the number of missing values.

Step 2 : Gather missing values in the bottom right.

Step 3 : Use the formula of rank-1 NMMF and repermutate.

Experiments on real data

A1GM is compared with gradient-based KL-WNMF

Relative runtime < 1 means A1GM is faster than KL-WNMF.

- Relative error > 1 means worse reconstruction error of A1GM than KL-WNMF.
- Increase rate is the ratio of # missing values after addition of missing values at step1.

×5 – 10 times faster!

	DataSet	size	# missing values	increase rate	relative error	relative runtime
ſ	- IndianPop	(24, 13)	1	1	1	0.19784
	Autompg	(398, 8)	6	1	1	0.12957
El e el	$\operatorname{DailySunSpot}$	(73718, 9)	3247	1	1	0.12845
FING _	CaliforniaHousing	(20640, 9)	207	1	1	0.11821
the best solution	MTSLibrary	(1533078, 4)	1247722	1	1	0.18327
	$\operatorname{BigMartSaleForecas}$	(8522, 5)	1463	1	1	0.12699
	– BoardGameGeekData	(101375,17)	21	1	1	0.14625
	$\operatorname{CreditCardApproval}$	(590, 7)	25	1.92	1.0018	0.12212
	${\it HumanResourceAnaly}$	$(14999,\ 7)$	519	1.96146	1.0168	0.11858
	$\operatorname{concretemiss}$	(1030, 9)	99	2	1.0010	0.11108
	heart disease	(303,14)	6	2	1	0.12259
Add missing values	lungcancer	(32, 57)	5	2	1.0001	0.13803
Add missing values.	$\operatorname{PerthHousePrice}$	(33656, 14)	16585	2.61345	1.0004	0.15382
Accuracy decreases.	SleepData	(62,8)	12	2.75	1.0211	0.18208
	$\operatorname{HCVData}$	(615, 11)	31	4.1935	1.0068	0.11246
	$\operatorname{arrhythmia}$	(452, 280)	408	4.70588	1.0148	0.11387
	$\operatorname{Bostonhousing}$	(506, 14)	120	5.6	1.003	0.1097
	${\it Life Expectancy Data}$	(2938,19)	2563	7.04097	5.7983	0.095773
	- HCCSurvivalDataSet	(165, 50)	826	8.3632	3.2898	0.07113
	wiki4HE	$(913,\ 53)$	1995	18.10175	1.2363	0.066256

Contents

Motivation, Strategy, and Contributions
Introduction of log-linear model on DAG

The best rank-1 approximation formula	□ The best rank-1 NMMF
Legendre Tucker-Rank Reduction(LTR)	□A1GM: faster rank-1 missing NMF
github.com/gkazunii/Legendre-tucker-rank-reduction	github.com/gkazunii/A1GM

□ Theoretical Remarks

Conclusion

 $\Box \text{ The rank of weight matrix is 2 after adding missing values. } \Phi_{ij} = \begin{cases} 0 & \text{If } \mathbf{x}_{ij} \text{ is missing} \\ 1 & \text{otherwise} \end{cases}$

$$rank(\mathbf{\Phi}) = 2$$

 $rank(\mathbf{\Phi}) = 2$

The rank of weight matrix is 2 after adding missing values. $\Phi_{ij} = \begin{cases} 0 & \text{If } \mathbf{x}_{ij} \text{ is missing} \\ 1 & \text{otherwise} \end{cases}$

 \Box Can we exactly solve rank-1 NMF if the rank(Φ) = 2?

2	3	3	1	4
3	4	1	5	1
3	9	\bigotimes	1	\bigotimes
5	2	3	4	1
1	4	\bigotimes	2	1

1	1	1	1	1
1	1	1	1	1
1	1	0	1	0
1	1	1	1	1
1	1	0	1	1
ra	nk	(Φ)) =	: 2

We can exactly solve rank-1 NMF with missing values by permutation if rank(Φ) ≤ 2 .

Theoretical Remarks 2 : Connection to balancing.

Theoretical Remarks 2 : Connection to balancing.

Theoretical Remarks 2 : Connection to balancing.

Conclusion

Describe low-rank condition using (θ, η)

- Rank-1 condition (η -representation) $\bar{\eta}_{ijk} = \bar{\eta}_{i11}\bar{\eta}_{1j1}\bar{\eta}_{11k}$
- Rank-1 condition (θ -representation) All many body $\overline{\theta}_{ijk}$ are 0

Closed Formula of the Best Rank-1 NMMF

The best rank-1 approximation for NMMF
For given $X \in \mathbb{R}^{I \times J}_{>0}$, $Y \in \mathbb{R}^{N \times J}_{>0}$, and $Z \in \mathbb{R}^{I \times M}_{>0}$ the best rank-1 NMMF is given as
$w_i = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \beta S(\mathbf{Z})} \left\{ \sum_{j=1}^J \mathbf{X}_{ij} + \beta \sum_{m=1}^M \mathbf{Z}_{im} \right\} \qquad a_n = \frac{\sum_{j=1}^J \mathbf{Y}_{nj}}{\sqrt{S(\mathbf{X})}}$
$h_j = \frac{\sqrt{S(\mathbf{X})}}{S(\mathbf{X}) + \alpha S(\mathbf{Y})} \left\{ \sum_{i=1}^{I} \mathbf{X}_{ij} + \alpha \sum_{n=1}^{N} \mathbf{Y}_{nj} \right\} \qquad b_m = \frac{\sum_{i=1}^{I} \mathbf{Z}_{im}}{\sqrt{S(\mathbf{X})}}$
S(X) is sum of all elements of X.

□ A1GM: Faster Rank-1 NMF with missing values

