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□ Non-negative low-rank approximation of data with various structures
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Approximates with a linear combination of fewer bases (principal components) for feature 
extraction, memory reduction, and pattern discovery.😀
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Low-rank approximation with non-negative constraints are based on gradient methods. 
→ Appropriate settings for stopping criteria, learning rate, and initial values are necessary 😢

Non-negative constraint improves interpretability
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□ Modeling with probability mass function on Directed Acyclic Graph(DAG).  
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Contribution

□ LTR: Faster Tucker-rank Reduction

11

□ A1GM: Faster rank-1 missing NMF

No worries about initial values, stopping criterion and learning rate 😄

Solve the task as a coupled NMF.

Find the most dominant factor rapidly. 

Missing value

Rank-1 = rank 1,1,1

Information Geometric Analysis using Distributions on DAGs that Correspond to Data Structures
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Modeling tensor and matrix
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□ Flexible modeling is required to capture the structure of various data

Formulate low-rank approximations with probabilistic models on DAGs



□DAG(poset) is a DAG ⇔ for all 𝑠1, 𝑠2, 𝑠3 ∈ the following three properties are satisfied.
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□ log-linear model on DAG 

We define the log-linear model on a DAG     as a mapping 𝑝: → 0,1 ．Natural parameters 𝜽 describe the model.

𝜃-space 𝜂-space

We can also describe the model by expectation parameters 𝜼 with Möbius function.

Mahito Sugiyama, Hiroyuki Nakahara and Koji Tsuda
"Tensor balancing on statistical manifold“(2017) ICML.16

Log-linear model on Directed Acyclic Graph (DAG)
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Describe a tensor with (θ,η)
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Random variables
Sample space
Probability values

Relation between distribution and tensor 
Möbius inversion formula

： 𝑖, 𝑗, 𝑘 , indices of the tensor 

： index set
： tensor values 𝒫𝑖𝑗𝑘



One-body and many-body parameters
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𝜽-representation of rank-1 tensor

27

One-body parameter Many-body parameter

Rank-1 condition (𝜽-representation)

Its all many-body 𝜃-parameters are 0.

Rank-1 subspace



𝜽-representation of rank-1 tensor

28

One-body parameter Many-body parameter

Rank-1 subspace

Rank-1 condition (𝜽-representation)

Its all many-body 𝜃-parameters are 0.

is e-flat. The projection is unique.



𝜽-representation of rank-1 tensor

29

One-body parameter Many-body parameter
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𝜽-representation of rank-1 tensor
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𝜼-representation of rank-1 tensor
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One-body parameter Many-body parameter

Rank-1 subspace𝜂𝑖𝑗𝑘 = 𝜂𝑖11𝜂1𝑗1𝜂11𝑘

Rank-1 condition (𝜼- representation)

Rank-1 condition (𝜽-representation)

Its all many-body 𝜃-parameters are 0.

Rank-1 subspace



𝜼-representation of rank-1 tensor
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The m-projection does not change one-body η-parameter

=

=

=

Shun-ichi Amari, Information Geometry and Its Applications, 2008, Theorem 11.6

One-body parameter Many-body parameter

𝜂𝑖𝑗𝑘 = 𝜂𝑖11𝜂1𝑗1𝜂11𝑘

Rank-1 condition (𝜼- representation)

Rank-1 condition (𝜽-representation)

Rank-1 subspace

Its all many-body 𝜃-parameters are 0.
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One-body parameter Many-body parameter

Möbius inversion formula

= 𝜂𝑖11𝜂1𝑗1𝜂11𝑘

Rank-1 condition (𝜼- representation)

Rank-1 condition (𝜽-representation)

Rank-1 subspace

All 𝜼-parameters after the projection are identified. 

Using inversion formula, we found the projection destination.

Its all many-body 𝜃-parameters are 0.



The best rank-1 approximation of 𝒫 ∈ ℝ>0
𝐼×𝐽×𝐾

is given as 

which minimizes KL divergence from 𝒫.

Best rank-1 tensor formula for minimizing KL divergence (𝑑 = 3 )
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Mean-field approximation and rank-1 approximation

We reproduce the result in K.Huang, et al. "Kullback-Leibler principal component for tensors is not NP-hard." ACSSC 2017
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The best rank-1 approximation of 𝒫 ∈ ℝ>0
𝐼×𝐽×𝐾

is given as 

which minimizes KL divergence from 𝒫.

A tensor with 𝑑 indices is a joint distribution with 𝑑 random variables.

A vector with only 1 index is an independent distribution with only one random variable.

Rank-1 approximation approximates a joint distribution by a product of independent distributions.

Best rank-1 tensor formula for minimizing KL divergence (𝑑 = 3 )
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By the way,

Frobenius error 

minimization 

is NP-hard

Mean-field approximation and rank-1 approximation

We reproduce the result in K.Huang, et al. "Kullback-Leibler principal component for tensors is not NP-hard." ACSSC 2017

Mean-field approximation : a methodology in physics for reducing a many-body problem to a one-body problem.

Normalized vector

depending on only 𝑖
Normalized vector

depending on only 𝑗

Normalized vector

depending on only 𝑘



MFA of Boltzmann-machine

𝑝 𝒙 =
1

𝑍(𝜽)
exp ෍

𝑖
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InteractionBias

Mean-field approximation and rank-1 approximation
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InteractionBias

Mean-field approximation and rank-1 approximation

=
1

𝑍(𝜽)
exp ෍

𝑖

𝜃𝑖𝑥𝑖 = 𝑝 𝑥1 …𝑝(𝑥𝑛)



𝑂 2𝑛
𝐷𝐾𝐿 𝑝, Ƹ𝑝

𝐷𝐾𝐿 Ƹ𝑝𝑒 , 𝑝

ҧ𝜂𝑖 = sigmoid 𝜃𝑖 +෍
𝑘
𝜃𝑘𝑗 ҧ𝜂𝑘
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Mean-field approximation and rank-1 approximation

MF equations

MFA of Boltzmann-machine
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Rank-1 approximation

𝑝𝜃(𝑖, 𝑗, 𝑘) = exp ෍

𝑖′=1

𝑖

෍
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𝑗

෍

𝑘′=1
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𝑂 2𝑛
𝐷𝐾𝐿 𝑝, Ƹ𝑝𝐷𝐾𝐿 𝑝, Ƹ𝑝MF equations

Set of products of independent distributions
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Mean-field approximation and rank-1 approximation
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43

Mean-field approximation and rank-1 approximation
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Mean-field approximation and rank-1 approximation

Minimizing KL divergence Minimizing inverse-KL divergence

Rank-1 

approximation

Mean-field

Approximation

of BM

impossible

Closed-formula

𝜂𝑖 = σ 𝜃𝑖 +෍
𝑘
𝜃𝑘𝑗𝜂𝑘

𝑂 2𝑛

m-projection e-projection

Projection onto

e-flat space

Projection onto

e-flat space
44
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unique not unique
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Formulate Tucker rank reduction by relaxing the rank-1 condition

𝜃𝑖𝑗𝑘 = 0

𝜃112

𝜃131

𝜃121

𝜃113

𝜃211
𝜃311

Expand the tensor by focusing on the 𝑚-th axis into a rectangular matrix 𝜃(𝑚)

(mode-𝑚 expansion)

rank 𝒫 = 1 ⟺ its all many−body 𝜃 parameters are 0

Rank-1 condition (𝜽-representation)
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𝜃(3) =

𝜃111 𝜃211 𝜃311 𝜃121 0 0 𝜃131 0 0
𝜃112 0 0 0 0 0 0 0 0
𝜃113 0 0 0 0 0 0 0 0

𝜃(1) =

𝜃111 𝜃121 𝜃131 𝜃112 0 0 𝜃113 0 0
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𝜃111 𝜃211 𝜃311 𝜃112 0 0 𝜃311 0 0
𝜃121 0 0 0 0 0 0 0 0
𝜃131 0 0 0 0 0 0 0 0

Formulate Tucker rank reduction by relaxing the rank-1 condition

𝜃𝑖𝑗𝑘 = 0

𝜃112

𝜃131

𝜃121

𝜃113

𝜃211
𝜃311

Expand the tensor by focusing on the 𝑚-th axis into a rectangular matrix 𝜃(𝑚)

(mode-𝑚 expansion)

Rank 1,1,1

rank 𝒫 = 1 ⟺ its all many−body 𝜃 parameters are 0

Rank-1 condition (𝜽-representation)
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Formulate Tucker rank reduction by relaxing the rank-1 condition
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The first row and first column are the scaling factors
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The relationship between bingo and rank

𝜃(1) =

𝜃111 𝜃121 𝜃131 𝜃112 0 0 𝜃113 0 0
𝜃211 0 0 0 0 0 0 0 0
𝜃311 𝜃321 𝜃331 𝜃312 𝜃322 𝜃332 𝜃313 𝜃323 𝜃333

𝜃(2) =

𝜃111 𝜃211 𝜃311 𝜃112 0 𝜃312 𝜃311 0 𝜃313
𝜃121 0 𝜃321 0 0 𝜃322 0 0 𝜃323
𝜃131 0 𝜃331 0 0 𝜃332 0 0 𝜃333

𝜃(3) =

𝜃111 𝜃211 𝜃311 𝜃121 0 𝜃321 𝜃131 0 𝜃331
𝜃112 0 𝜃312 0 0 𝜃322 0 0 𝜃332
𝜃113 0 𝜃313 0 0 𝜃323 0 0 𝜃333

One bingo

50

No bingo

No bingo

Rank 2,3,3



The relationship between bingo and rank

𝜃(1) =

𝜃111 𝜃121 𝜃131 𝜃112 0 0 𝜃113 0 0
𝜃211 0 0 0 0 0 0 0 0
𝜃311 𝜃321 𝜃331 𝜃312 𝜃322 𝜃332 𝜃313 𝜃323 𝜃333

𝜃(2) =

𝜃111 𝜃211 𝜃311 𝜃112 0 𝜃312 𝜃311 0 𝜃313
𝜃121 0 𝜃321 0 0 𝜃322 0 0 𝜃323
𝜃131 0 𝜃331 0 0 𝜃332 0 0 𝜃333

𝜃(3) =

𝜃111 𝜃211 𝜃311 𝜃121 0 𝜃321 𝜃131 0 𝜃331
𝜃112 0 𝜃312 0 0 𝜃322 0 0 𝜃332
𝜃113 0 𝜃313 0 0 𝜃323 0 0 𝜃333

One bingo 𝜃123

●

●
𝒫

ത𝒫

𝐷𝐾𝐿 𝒫, ത𝒫

m-projection

Subspace with one bingo in the mode-1 direction ℬ 1
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No bingo

No bingo

Input tensor

Rank 2,3,3



The relationship between bingo and rank

𝜃(1) =

𝜃111 𝜃121 𝜃131 𝜃112 0 0 𝜃113 0 0
𝜃211 0 0 0 0 0 0 0 0
𝜃311 𝜃321 𝜃331 𝜃312 𝜃322 𝜃332 𝜃313 𝜃323 𝜃333

𝜃(2) =

𝜃111 𝜃211 𝜃311 𝜃112 0 𝜃312 𝜃311 0 𝜃313
𝜃121 0 𝜃321 0 0 𝜃322 0 0 𝜃323
𝜃131 0 𝜃331 0 0 𝜃332 0 0 𝜃333

𝜃(3) =

𝜃111 𝜃211 𝜃311 𝜃121 0 𝜃321 𝜃131 0 𝜃331
𝜃112 0 𝜃312 0 0 𝜃322 0 0 𝜃332
𝜃113 0 𝜃313 0 0 𝜃323 0 0 𝜃333

One bingo 𝜃123

●

●
𝒫

ത𝒫

𝐷𝐾𝐿 𝒫, ത𝒫

m-projection

Subspace with one bingo in the mode-1 direction ℬ 1
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No bingo

No bingo

Input tensor

The mode-𝑘 expansion 𝜃(𝑘) of the natural parameter of a tensor 𝒫 ∈ ℝ>0
𝐼1×𝐼2×𝐼3 has 𝑏𝑘 bingos

⇒ rank 𝒫 ≤ 𝐼1 − 𝑏1, 𝐼2 − 𝑏2, 𝐼3 − 𝑏3

Bingo rule (𝑑 = 3 )

Rank 2,3,3



Example: Reduce the rank of (8,8,3) tensor to (5,8,3) or less
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𝜃 is zero

𝜃 can be any

STEP1 : Choose a bingo location.



Example: Reduce the rank of (8,8,3) tensor to (5,8,3) or less

Bingo

Bingo

Bingo

54

𝜃 is zero

𝜃 can be any

STEP1 : Choose a bingo location.



𝜃 is zero

𝜃 can be any

STEP1 : Choose a bingo location.

The shaded areas do not change their values in the projection.
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Example: Reduce the rank of (8,8,3) tensor to (5,8,3) or less

STEP2 : Replace the bingo part with 

the best rank-1 tensor.



Replace the partial tensor in the red box using the best rank-1 approximation formula
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Example: Reduce the rank of (8,8,3) tensor to (5,8,3) or less

STEP2 : Replace the bingo part with 

the best rank-1 tensor.

STEP1 : Choose a bingo location.
𝜃 is zero

𝜃 can be any



Replace the partial tensor in the red box using the best rank-1 approximation formula
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Example: Reduce the rank of (8,8,3) tensor to (5,8,3) or less

STEP2 : Replace the bingo part with 

the best rank-1 tensor.

STEP1 : Choose a bingo location.
𝜃 is zero

𝜃 can be any



Replace the partial tensor in the red box using the best rank-1 approximation formula

The best tensor is obtained in the specified bingo space.  😄
There is no guarantee that it is the best rank (5,8,3) approximation. 😢 58

Example: Reduce the rank of (8,8,3) tensor to (5,8,3) or less

STEP2 : Replace the bingo part with 

the best rank-1 tensor.

STEP1 : Choose a bingo location.
𝜃 is zero

𝜃 can be any
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Example: Reduce the rank of (8,8,3) tensor to (5,7,3) or less

STEP2 : Replace the bingo part with 

the best rank-1 tensor.

STEP1 : Choose a bingo location.
𝜃 is zero

𝜃 can be any

The shaded areas do not change their values in the projection.
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Experimental results (synthetic data)

LTR is faster with the competitive approximation performance.
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Experimental results (real data)

LTR is faster with the competitive approximation performance.

(92, 112, 400) (9, 9, 512, 512, 3)



Contents
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□ Introduction of log-linear model on DAG

□ The best rank-1 approximation formula

□ Legendre Tucker-Rank Reduction(LTR)

□ The best rank-1 NMMF 

□A1GM: faster rank-1 missing NMF

□ Motivation, Strategy, and Contributions

github.com/gkazunii/A1GMgithub.com/gkazunii/ Legendre-tucker-rank-reduction

□ Theoretical Remarks

□ Conclusion
16:40



Strategy for rank-1 NMF with missing values 

63

If 𝐗𝑖𝑗 is missing

otherwise
Element-wise product 𝚽𝑖𝑗 = ቊ

0
1

□ Collect missing values in a corner of matrix to solve as coupled NMF

Missing value



Strategy for rank-1 NMF with missing values 

64

NMMF (Takeuchi et al., 2013)

𝚽𝑖𝑗 = ቊ
0
1

If 𝐗𝑖𝑗 is missing

otherwise
Element-wise product

Missing value

□ Collect missing values in a corner of matrix to solve as coupled NMF

Equivalent



NMMF, Nonnegative multiple matrix factorization (Takeuchi et al., 2013)
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The best rank-1 approximation of NMMF

The best rank-1 approximation of NMMF

66

u
s
e

r

artist

ta
g

user

u
s
e

r
ta

g

artist user

u
s
e

r

artist



Modeling of NMMF
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One

To
One



One-body and many-body parameters

68

𝑿, 𝒀, 𝒁 is simultaneously rank-1 decomposable. ⇔ It can be written as 𝒘⊗𝒉,𝒂⊗ 𝒉,𝒘⊗ 𝒃 .

One-body parameter Two-body parameter



Information geometry of rank-1 NMMF

69

𝑿, 𝒀, 𝒁 is simultaneously rank-1 decomposable. ⇔ It can be written as 𝒘⊗𝒉,𝒂⊗ 𝒉,𝒘⊗ 𝒃 .

Its all two-body 𝜃-parameters are 0.

Simultaneous Rank-1 𝜽-condition

One-body parameter Two-body parameter



Information geometry of rank-1 NMMF

70

𝜂𝑖𝑗 = 𝜂𝑖1𝜂1𝑗

Simultaneous Rank-1 𝜼-condition

Its all two-body 𝜃-parameters are 0.

Simultaneous Rank-1 𝜽-condition

𝑿, 𝒀, 𝒁 is simultaneously rank-1 decomposable. ⇔ It can be written as 𝒘⊗𝒉,𝒂⊗ 𝒉,𝒘⊗ 𝒃 .

One-body parameter Two-body parameter

is e-flat. The projection is unique.



Find the global optimal solution of rank-1 NMMF
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𝜂𝑖𝑗 = 𝜂𝑖1𝜂1𝑗

Simultaneous Rank-1 𝜼-condition

Its all two-body 𝜃-parameters are 0.

Simultaneous Rank-1 𝜽-condition

𝑿, 𝒀, 𝒁 is simultaneously rank-1 decomposable. ⇔ It can be written as 𝒘⊗𝒉,𝒂⊗ 𝒉,𝒘⊗ 𝒃 .

One-body parameter Two-body parameter

The m-projection does not change one-body η-parameter
Shun-ichi Amari, Information Geometry and Its Applications, 2008, Theorem 11.6



Find the global optimal solution of rank-1 NMMF

72

𝜂𝑖𝑗 = 𝜂𝑖1𝜂1𝑗

Simultaneous Rank-1 𝜼-condition

Its all two-body 𝜃-parameters are 0.

Simultaneous Rank-1 𝜽-condition

𝑿, 𝒀, 𝒁 is simultaneously rank-1 decomposable. ⇔ It can be written as 𝒘⊗𝒉,𝒂⊗ 𝒉,𝒘⊗ 𝒃 .

One-body parameter Two-body parameter

The m-projection does not change one-body η-parameter
Shun-ichi Amari, Information Geometry and Its Applications, 2008, Theorem 11.6

All 𝜼-parameters after the projection are identified. 19:20



Rank-1 NMF with missing values 

□ NMMF can be viewed as a special case of NMF with missing values.

Equivalent

73



Rank-1 NMF with missing values 

□ NMMF can be viewed as a special case of NMF with missing values.

Equivalent

□ NMF is homogeneous for row and column permutations

74



A1GM: Algorithm

Step 1 : Gather missing values in the bottom right.

Step 2 : Use the formula of the best rank-1 NMMF.

75

Step 3 : Repermutate

Find exact solution 🤔❓



Examples that permutations cannot collect missing values into corners
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Add missing values to solve the problem as NMMF
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Add missing values to solve the problem as NMMF

78

Reconstruction error worsens 😢



Add missing values to solve the problem as NMMF

79Gain in efficiency 😀

Reconstruction error worsens 😢



🙆Data that A1GM is good at and not good at🙅
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🙅 Missing values are evenly distributed in each row and column. 



🙆Data that A1GM is good at and not good at🙅

81

Missing values tend to be in certain columns  in some real datasets.

ex)  disconnected sensing device, 

optional answer field in questionnaire form

🙅 Missing values are evenly distributed in each row and column. 

🙆 Missing are heavily distributed in certain rows and columns. 



A1GM: Algorithm

Step 1 : Increase the number of missing values. 

Step 2 : Gather missing values in the bottom right.

Step 3 : Use the formula of rank-1 NMMF and repermutate.

82



Experiments on real data
□ A1GM is compared with gradient-based KL-WNMF

- Relative runtime < 1 means A1GM is faster than KL-WNMF.

- Relative error > 1 means worse reconstruction error of A1GM than KL-WNMF.
- Increase rate is the ratio of # missing values after addition of missing values at step1. 

×5 – 10 

times faster!

83

Find 
the best solution

Add missing values. 

Accuracy decreases.



Contents
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□ Introduction of log-linear model on DAG

□ The best rank-1 approximation formula

□ Legendre Tucker-Rank Reduction(LTR)

□ The best rank-1 NMMF 

□A1GM: faster rank-1 missing NMF

□ Motivation, Strategy, and Contributions

github.com/gkazunii/A1GMgithub.com/gkazunii/Legendre-tucker-rank-reduction

□ Theoretical Remarks

□ Conclusion
22:30



Theoretical Remarks 1 : Extended NMMF.

𝚽𝑖𝑗 = ቊ
0
1

If 𝐗𝑖𝑗 is missing

otherwise
□ The rank of weight matrix is 2 after adding missing values.

𝚽 𝚽𝐗 𝐗

rank 𝚽 = 2 rank 𝚽 = 2

85



Theoretical Remarks 1 : Extended NMMF.

𝚽𝑖𝑗 = ቊ
0
1

If 𝐗𝑖𝑗 is missing

otherwise
□ The rank of weight matrix is 2 after adding missing values.

□ Can we exactly solve rank-1 NMF if the rank(Φ) = 2?

𝚽 𝚽𝐗 𝐗

rank 𝚽 = 2

rank 𝚽 = 2

rank 𝚽 = 2
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Theoretical Remarks 1 : Extended NMMF.
The best rank-1 approximation of extended NMMF

87



Theoretical Remarks 1 : Extended NMMF.

88

The best rank-1 approximation of extended NMMF

Equivalent

𝚽𝑖𝑗 = ቊ
0
1

If 𝐗𝑖𝑗 is missing

otherwise



Theoretical Remarks 1 : Extended NMMF.

89

The best rank-1 approximation of extended NMMF

Equivalent

If rank(𝚽) ≦2, 

the matrix can be transformed into the form 

𝚽𝑖𝑗 = ቊ
0
1

If 𝐗𝑖𝑗 is missing

otherwise

Permutation

We can exactly solve rank-1 NMF with missing values by permutation if rank(𝚽) ≦2. 



Theoretical Remarks 2 : Connection to balancing.
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Transform

Balanced matrix

(Doubly stochastic matrix)

□ Matrix Balancing
Mahito Sugiyama, Hiroyuki Nakahara and Koji Tsuda
"Tensor balancing on statistical manifold“(2017) ICML.



Theoretical Remarks 2 : Connection to balancing.
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Transform

Balanced matrix

(Doubly stochastic matrix)

Balancing condition
□ Matrix Balancing

Mahito Sugiyama, Hiroyuki Nakahara and Koji Tsuda
"Tensor balancing on statistical manifold“(2017) ICML.



Theoretical Remarks 2 : Connection to balancing.

92

Transform

Balanced matrix

(Doubly stochastic matrix)

Balancing condition
□ Matrix Balancing

Rank-1 condition

Its all many-body

𝜃-parameters are 0.

Balanced rank-1 matrix is unique.



□ Describe low-rank condition using (𝜃,𝜂)

Rank-1 condition (𝜼-representation)

ҧ𝜂𝑖𝑗𝑘 = ҧ𝜂𝑖11 ҧ𝜂1𝑗1 ҧ𝜂11𝑘

Rank-1 condition (𝜽-representation)

All many body ҧ𝜃𝑖𝑗𝑘 are 0
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□ Closed Formula of the Best Rank-1 NMMF

□ A1GM: Faster Rank-1 NMF with missing values

Conclusion

The best rank-1 approximation for NMMF

Data structure DAG Infor-Geo

93


