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□ Non-negative low-rank approximation of data with various structures
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Approximates with a linear combination of fewer bases (principal components) for feature 
extraction, memory reduction, and pattern discovery.😀
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Low-rank approximation with non-negative constraints are based on gradient methods. 
→ Appropriate settings for stopping criteria, learning rate, and initial values are necessary 😢

Non-negative constraint improves interpretability
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□ Modeling with probability mass function on Directed Acyclic Graph(DAG).  
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Contribution

□ LTR: Faster Tucker-rank Reduction
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□ A1GM: Faster rank-1 missing NMF

No worries about initial values, stopping criterion and learning rate 😄

Solve the task as a coupled NMF.

Find the most dominant factor rapidly. 

Missing value

Rank-1 = rank 1,1,1

Information Geometric Analysis using Distributions on DAGs that Correspond to Data Structures
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Modeling tensor and matrix
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□ Flexible modeling is required to capture the structure of various data

Formulate low-rank approximations with probabilistic models on DAGs



□DAG(poset) is a DAG ⇔ for all 𝑠1, 𝑠2, 𝑠3 ∈ the following three properties are satisfied.
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Mahito Sugiyama, Hiroyuki Nakahara and Koji Tsuda
"Tensor balancing on statistical manifold“(2017) ICML.14

Log-linear model on Directed Acyclic Graph (DAG)



□DAG(poset) is a DAG ⇔ for all 𝑠1, 𝑠2, 𝑠3 ∈ the following three properties are satisfied.

(1) Reflexivity ∶ 𝑠1 ≤ 𝑠1 (2) Antisymmetry: 𝑠1 ≤ 𝑠2, 𝑠2 ≤ 𝑠1 ⇒ 𝑠1 = 𝑠2 (3)Transitivity:𝑠1 ≤ 𝑠2, 𝑠2 ≤ 𝑠3 ⇒ 𝑠1 ≤ 𝑠3

□ log-linear model on DAG 

We define the log-linear model on a DAG     as a mapping 𝑝: → 0,1 ．Natural parameters 𝜽 describe the model.

𝜃-space

Mahito Sugiyama, Hiroyuki Nakahara and Koji Tsuda
"Tensor balancing on statistical manifold“(2017) ICML.15

Log-linear model on Directed Acyclic Graph (DAG)



is a DAG ⇔ for all 𝑠1, 𝑠2, 𝑠3 ∈ the following three properties are satisfied.□DAG(poset)

(1) Reflexivity ∶ 𝑠1 ≤ 𝑠1 (2) Antisymmetry: 𝑠1 ≤ 𝑠2, 𝑠2 ≤ 𝑠1 ⇒ 𝑠1 = 𝑠2 (3)Transitivity:𝑠1 ≤ 𝑠2, 𝑠2 ≤ 𝑠3 ⇒ 𝑠1 ≤ 𝑠3

□ log-linear model on DAG 

We define the log-linear model on a DAG     as a mapping 𝑝: → 0,1 ．Natural parameters 𝜽 describe the model.

𝜃-space 𝜂-space

We can also describe the model by expectation parameters 𝜼 with Möbius function.

Mahito Sugiyama, Hiroyuki Nakahara and Koji Tsuda
"Tensor balancing on statistical manifold“(2017) ICML.16

Log-linear model on Directed Acyclic Graph (DAG)
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Describe a tensor with (θ,η)

25

Random variables
Sample space
Probability values

Relation between distribution and tensor 
Möbius inversion formula

： 𝑖, 𝑗, 𝑘 , indices of the tensor 

： index set
： tensor values 𝒫𝑖𝑗𝑘



One-body and many-body parameters

26

One-body parameter Many-body parameter



𝜽-representation of rank-1 tensor
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One-body parameter Many-body parameter
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𝜽-representation of rank-1 tensor
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𝜼-representation of rank-1 tensor
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One-body parameter Many-body parameter
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𝜼-representation of rank-1 tensor
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The m-projection does not change one-body η-parameter

=

=

=

Shun-ichi Amari, Information Geometry and Its Applications, 2008, Theorem 11.6

One-body parameter Many-body parameter

𝜂𝑖𝑗𝑘 = 𝜂𝑖11𝜂1𝑗1𝜂11𝑘

Rank-1 condition (𝜼- representation)

Rank-1 condition (𝜽-representation)

Rank-1 subspace

Its all many-body 𝜃-parameters are 0.
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One-body parameter Many-body parameter

Möbius inversion formula

= 𝜂𝑖11𝜂1𝑗1𝜂11𝑘

Rank-1 condition (𝜼- representation)

Rank-1 condition (𝜽-representation)

Rank-1 subspace

All 𝜼-parameters after the projection are identified. 

Using inversion formula, we found the projection destination.

Its all many-body 𝜃-parameters are 0.



The best rank-1 approximation of 𝒫 ∈ ℝ>0
𝐼×𝐽×𝐾

is given as 

which minimizes KL divergence from 𝒫.

Best rank-1 tensor formula for minimizing KL divergence (𝑑 = 3 )
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Mean-field approximation and rank-1 approximation

We reproduce the result in K.Huang, et al. "Kullback-Leibler principal component for tensors is not NP-hard." ACSSC 2017
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The best rank-1 approximation of 𝒫 ∈ ℝ>0
𝐼×𝐽×𝐾

is given as 

which minimizes KL divergence from 𝒫.

A tensor with 𝑑 indices is a joint distribution with 𝑑 random variables.

A vector with only 1 index is an independent distribution with only one random variable.

Rank-1 approximation approximates a joint distribution by a product of independent distributions.

Best rank-1 tensor formula for minimizing KL divergence (𝑑 = 3 )
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By the way,

Frobenius error 

minimization 

is NP-hard

Mean-field approximation and rank-1 approximation

We reproduce the result in K.Huang, et al. "Kullback-Leibler principal component for tensors is not NP-hard." ACSSC 2017

Mean-field approximation : a methodology in physics for reducing a many-body problem to a one-body problem.

Normalized vector

depending on only 𝑖
Normalized vector

depending on only 𝑗

Normalized vector

depending on only 𝑘



MFA of Boltzmann-machine

𝑝 𝒙 =
1

𝑍(𝜽)
exp 

𝑖

𝜃𝑖𝑥𝑖 +

𝑖<𝑗

𝜃𝑖𝑗𝑥𝑖𝑥𝑗

𝐷𝐾𝐿 𝑝, Ƹ𝑝

𝜂𝑖 = 

𝑥1=0

1

⋯ 

𝑥𝑛=0

1

𝑥𝑖𝑝 𝒙

39

InteractionBias
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InteractionBias

Mean-field approximation and rank-1 approximation

=
1

𝑍(𝜽)
exp 

𝑖

𝜃𝑖𝑥𝑖 = 𝑝 𝑥1 …𝑝(𝑥𝑛)



𝑂 2𝑛
𝐷𝐾𝐿 𝑝, Ƹ𝑝

𝐷𝐾𝐿 Ƹ𝑝𝑒 , 𝑝

ҧ𝜂𝑖 = sigmoid 𝜃𝑖 +
𝑘
𝜃𝑘𝑗 ҧ𝜂𝑘
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Mean-field approximation and rank-1 approximation

MF equations

MFA of Boltzmann-machine

𝑝 𝒙 =
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Rank-1 approximation

𝑝𝜃(𝑖, 𝑗, 𝑘) = exp 

𝑖′=1

𝑖



𝑗′=1

𝑗



𝑘′=1

𝑘

𝜃𝑖′𝑗′𝑘′

𝑂 2𝑛
𝐷𝐾𝐿 𝑝, Ƹ𝑝𝐷𝐾𝐿 𝑝, Ƹ𝑝MF equations

Set of products of independent distributions

𝜂𝑖11 = 

𝑗′=1

𝐽



𝑘′=1

𝐾

𝒫𝑖𝑗′𝑘′

ҧ𝜂𝑖 = sigmoid 𝜃𝑖 +
𝑘
𝜃𝑘𝑗 ҧ𝜂𝑘
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Mean-field approximation and rank-1 approximation
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Rank-1 approximation
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𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒
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Mean-field approximation and rank-1 approximation

Minimizing KL divergence Minimizing inverse-KL divergence

Rank-1 

approximation

Mean-field

Approximation

of BM

impossible

Closed-formula

𝜂𝑖 = σ 𝜃𝑖 +
𝑘
𝜃𝑘𝑗𝜂𝑘

𝑂 2𝑛

m-projection e-projection

Projection onto

e-flat space

Projection onto

e-flat space
44
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Formulate Tucker rank reduction by relaxing the rank-1 condition

𝜃𝑖𝑗𝑘 = 0

𝜃112

𝜃131

𝜃121

𝜃113

𝜃211
𝜃311

Expand the tensor by focusing on the 𝑚-th axis into a rectangular matrix 𝜃(𝑚)

(mode-𝑚 expansion)

rank 𝒫 = 1 ⟺ its all many−body 𝜃 parameters are 0

Rank-1 condition (𝜽-representation)
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𝜃(3) =

𝜃111 𝜃211 𝜃311 𝜃121 0 0 𝜃131 0 0
𝜃112 0 0 0 0 0 0 0 0
𝜃113 0 0 0 0 0 0 0 0

𝜃(1) =

𝜃111 𝜃121 𝜃131 𝜃112 0 0 𝜃113 0 0
𝜃211 0 0 0 0 0 0 0 0
𝜃311 0 0 0 0 0 0 0 0

𝜃(2) =

𝜃111 𝜃211 𝜃311 𝜃112 0 0 𝜃311 0 0
𝜃121 0 0 0 0 0 0 0 0
𝜃131 0 0 0 0 0 0 0 0

Formulate Tucker rank reduction by relaxing the rank-1 condition
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(mode-𝑚 expansion)

Rank 1,1,1

rank 𝒫 = 1 ⟺ its all many−body 𝜃 parameters are 0

Rank-1 condition (𝜽-representation)
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The first row and first column are the scaling factors

49



The relationship between bingo and rank

𝜃(1) =

𝜃111 𝜃121 𝜃131 𝜃112 0 0 𝜃113 0 0
𝜃211 0 0 0 0 0 0 0 0
𝜃311 𝜃321 𝜃331 𝜃312 𝜃322 𝜃332 𝜃313 𝜃323 𝜃333

𝜃(2) =

𝜃111 𝜃211 𝜃311 𝜃112 0 𝜃312 𝜃311 0 𝜃313
𝜃121 0 𝜃321 0 0 𝜃322 0 0 𝜃323
𝜃131 0 𝜃331 0 0 𝜃332 0 0 𝜃333

𝜃(3) =

𝜃111 𝜃211 𝜃311 𝜃121 0 𝜃321 𝜃131 0 𝜃331
𝜃112 0 𝜃312 0 0 𝜃322 0 0 𝜃332
𝜃113 0 𝜃313 0 0 𝜃323 0 0 𝜃333

One bingo

50

No bingo

No bingo

Rank 2,3,3
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𝜃131 0 𝜃331 0 0 𝜃332 0 0 𝜃333

𝜃(3) =

𝜃111 𝜃211 𝜃311 𝜃121 0 𝜃321 𝜃131 0 𝜃331
𝜃112 0 𝜃312 0 0 𝜃322 0 0 𝜃332
𝜃113 0 𝜃313 0 0 𝜃323 0 0 𝜃333

One bingo 𝜃123

●

●
𝒫

ത𝒫

𝐷𝐾𝐿 𝒫, ത𝒫

m-projection

Subspace with one bingo in the mode-1 direction ℬ 1
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No bingo

No bingo

Input tensor

Rank 2,3,3



The relationship between bingo and rank

𝜃(1) =

𝜃111 𝜃121 𝜃131 𝜃112 0 0 𝜃113 0 0
𝜃211 0 0 0 0 0 0 0 0
𝜃311 𝜃321 𝜃331 𝜃312 𝜃322 𝜃332 𝜃313 𝜃323 𝜃333

𝜃(2) =

𝜃111 𝜃211 𝜃311 𝜃112 0 𝜃312 𝜃311 0 𝜃313
𝜃121 0 𝜃321 0 0 𝜃322 0 0 𝜃323
𝜃131 0 𝜃331 0 0 𝜃332 0 0 𝜃333

𝜃(3) =

𝜃111 𝜃211 𝜃311 𝜃121 0 𝜃321 𝜃131 0 𝜃331
𝜃112 0 𝜃312 0 0 𝜃322 0 0 𝜃332
𝜃113 0 𝜃313 0 0 𝜃323 0 0 𝜃333

One bingo 𝜃123

●

●
𝒫

ത𝒫

𝐷𝐾𝐿 𝒫, ത𝒫

m-projection

Subspace with one bingo in the mode-1 direction ℬ 1
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No bingo

No bingo

Input tensor

The mode-𝑘 expansion 𝜃(𝑘) of the natural parameter of a tensor 𝒫 ∈ ℝ>0
𝐼1×𝐼2×𝐼3 has 𝑏𝑘 bingos

⇒ rank 𝒫 ≤ 𝐼1 − 𝑏1, 𝐼2 − 𝑏2, 𝐼3 − 𝑏3

Bingo rule (𝑑 = 3 )

Rank 2,3,3



Example: Reduce the rank of (8,8,3) tensor to (5,8,3) or less

53

𝜃 is zero

𝜃 can be any

STEP1 : Choose a bingo location.



Example: Reduce the rank of (8,8,3) tensor to (5,8,3) or less

Bingo

Bingo

Bingo

54

𝜃 is zero

𝜃 can be any

STEP1 : Choose a bingo location.



𝜃 is zero

𝜃 can be any

STEP1 : Choose a bingo location.

The shaded areas do not change their values in the projection.
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Example: Reduce the rank of (8,8,3) tensor to (5,8,3) or less

STEP2 : Replace the bingo part with 

the best rank-1 tensor.



Replace the partial tensor in the red box using the best rank-1 approximation formula

56

Example: Reduce the rank of (8,8,3) tensor to (5,8,3) or less

STEP2 : Replace the bingo part with 

the best rank-1 tensor.

STEP1 : Choose a bingo location.
𝜃 is zero

𝜃 can be any



Replace the partial tensor in the red box using the best rank-1 approximation formula
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Example: Reduce the rank of (8,8,3) tensor to (5,8,3) or less

STEP2 : Replace the bingo part with 

the best rank-1 tensor.

STEP1 : Choose a bingo location.
𝜃 is zero

𝜃 can be any



Replace the partial tensor in the red box using the best rank-1 approximation formula

The best tensor is obtained in the specified bingo space.  😄
There is no guarantee that it is the best rank (5,8,3) approximation. 😢 58

Example: Reduce the rank of (8,8,3) tensor to (5,8,3) or less

STEP2 : Replace the bingo part with 

the best rank-1 tensor.

STEP1 : Choose a bingo location.
𝜃 is zero

𝜃 can be any
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Example: Reduce the rank of (8,8,3) tensor to (5,7,3) or less

STEP2 : Replace the bingo part with 

the best rank-1 tensor.

STEP1 : Choose a bingo location.
𝜃 is zero

𝜃 can be any

The shaded areas do not change their values in the projection.
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Experimental results (synthetic data)

LTR is faster with the competitive approximation performance.



61

Experimental results (real data)

LTR is faster with the competitive approximation performance.

(92, 112, 400) (9, 9, 512, 512, 3)



Contents
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□ Introduction of log-linear model on DAG

□ The best rank-1 approximation formula

□ Legendre Tucker-Rank Reduction(LTR)

□ The best rank-1 NMMF 

□A1GM: faster rank-1 missing NMF

□ Motivation, Strategy, and Contributions

github.com/gkazunii/A1GMgithub.com/gkazunii/ Legendre-tucker-rank-reduction

□ Theoretical Remarks

□ Conclusion
16:40



Strategy for rank-1 NMF with missing values 

63

If 𝐗𝑖𝑗 is missing

otherwise
Element-wise product 𝚽𝑖𝑗 = ቊ

0
1

□ Collect missing values in a corner of matrix to solve as coupled NMF

Missing value



Strategy for rank-1 NMF with missing values 

64

NMMF (Takeuchi et al., 2013)

𝚽𝑖𝑗 = ቊ
0
1

If 𝐗𝑖𝑗 is missing

otherwise
Element-wise product

Missing value

□ Collect missing values in a corner of matrix to solve as coupled NMF

Equivalent



NMMF, Nonnegative multiple matrix factorization (Takeuchi et al., 2013)
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The best rank-1 approximation of NMMF

The best rank-1 approximation of NMMF
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Modeling of NMMF
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One

To
One



One-body and many-body parameters

68

𝑿, 𝒀, 𝒁 is simultaneously rank-1 decomposable. ⇔ It can be written as 𝒘⊗𝒉,𝒂⊗ 𝒉,𝒘⊗ 𝒃 .

One-body parameter Two-body parameter



Information geometry of rank-1 NMMF

69

𝑿, 𝒀, 𝒁 is simultaneously rank-1 decomposable. ⇔ It can be written as 𝒘⊗𝒉,𝒂⊗ 𝒉,𝒘⊗ 𝒃 .

Its all two-body 𝜃-parameters are 0.

Simultaneous Rank-1 𝜽-condition

One-body parameter Two-body parameter



Information geometry of rank-1 NMMF

70

𝜂𝑖𝑗 = 𝜂𝑖1𝜂1𝑗

Simultaneous Rank-1 𝜼-condition

Its all two-body 𝜃-parameters are 0.

Simultaneous Rank-1 𝜽-condition

𝑿, 𝒀, 𝒁 is simultaneously rank-1 decomposable. ⇔ It can be written as 𝒘⊗𝒉,𝒂⊗ 𝒉,𝒘⊗ 𝒃 .

One-body parameter Two-body parameter

is e-flat. The projection is unique.



Find the global optimal solution of rank-1 NMMF
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𝜂𝑖𝑗 = 𝜂𝑖1𝜂1𝑗

Simultaneous Rank-1 𝜼-condition

Its all two-body 𝜃-parameters are 0.

Simultaneous Rank-1 𝜽-condition

𝑿, 𝒀, 𝒁 is simultaneously rank-1 decomposable. ⇔ It can be written as 𝒘⊗𝒉,𝒂⊗ 𝒉,𝒘⊗ 𝒃 .

One-body parameter Two-body parameter

The m-projection does not change one-body η-parameter
Shun-ichi Amari, Information Geometry and Its Applications, 2008, Theorem 11.6



Find the global optimal solution of rank-1 NMMF

72

𝜂𝑖𝑗 = 𝜂𝑖1𝜂1𝑗

Simultaneous Rank-1 𝜼-condition

Its all two-body 𝜃-parameters are 0.

Simultaneous Rank-1 𝜽-condition

𝑿, 𝒀, 𝒁 is simultaneously rank-1 decomposable. ⇔ It can be written as 𝒘⊗𝒉,𝒂⊗ 𝒉,𝒘⊗ 𝒃 .

One-body parameter Two-body parameter

The m-projection does not change one-body η-parameter
Shun-ichi Amari, Information Geometry and Its Applications, 2008, Theorem 11.6

All 𝜼-parameters after the projection are identified. 19:20



Rank-1 NMF with missing values 

□ NMMF can be viewed as a special case of NMF with missing values.

Equivalent

73



Rank-1 NMF with missing values 

□ NMMF can be viewed as a special case of NMF with missing values.

Equivalent

□ NMF is homogeneous for row and column permutations

74



A1GM: Algorithm

Step 1 : Gather missing values in the bottom right.

Step 2 : Use the formula of the best rank-1 NMMF.

75

Step 3 : Repermutate

Find exact solution 🤔❓



Examples that permutations cannot collect missing values into corners
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Add missing values to solve the problem as NMMF
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Add missing values to solve the problem as NMMF

78

Reconstruction error worsens 😢



Add missing values to solve the problem as NMMF

79Gain in efficiency 😀

Reconstruction error worsens 😢



🙆Data that A1GM is good at and not good at🙅
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🙅 Missing values are evenly distributed in each row and column. 



🙆Data that A1GM is good at and not good at🙅

81

Missing values tend to be in certain columns  in some real datasets.

ex)  disconnected sensing device, 

optional answer field in questionnaire form

🙅 Missing values are evenly distributed in each row and column. 

🙆 Missing are heavily distributed in certain rows and columns. 



A1GM: Algorithm

Step 1 : Increase the number of missing values. 

Step 2 : Gather missing values in the bottom right.

Step 3 : Use the formula of rank-1 NMMF and repermutate.

82



Experiments on real data
□ A1GM is compared with gradient-based KL-WNMF

- Relative runtime < 1 means A1GM is faster than KL-WNMF.

- Relative error > 1 means worse reconstruction error of A1GM than KL-WNMF.
- Increase rate is the ratio of # missing values after addition of missing values at step1. 

×5 – 10 

times faster!

83

Find 
the best solution

Add missing values. 

Accuracy decreases.



Contents
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□ Introduction of log-linear model on DAG

□ The best rank-1 approximation formula

□ Legendre Tucker-Rank Reduction(LTR)

□ The best rank-1 NMMF 

□A1GM: faster rank-1 missing NMF

□ Motivation, Strategy, and Contributions

github.com/gkazunii/A1GMgithub.com/gkazunii/Legendre-tucker-rank-reduction

□ Theoretical Remarks

□ Conclusion
22:30



Theoretical Remarks 1 : Extended NMMF.

𝚽𝑖𝑗 = ቊ
0
1

If 𝐗𝑖𝑗 is missing

otherwise
□ The rank of weight matrix is 2 after adding missing values.

𝚽 𝚽𝐗 𝐗

rank 𝚽 = 2 rank 𝚽 = 2

85



Theoretical Remarks 1 : Extended NMMF.

𝚽𝑖𝑗 = ቊ
0
1

If 𝐗𝑖𝑗 is missing

otherwise
□ The rank of weight matrix is 2 after adding missing values.

□ Can we exactly solve rank-1 NMF if the rank(Φ) = 2?

𝚽 𝚽𝐗 𝐗

rank 𝚽 = 2

rank 𝚽 = 2

rank 𝚽 = 2

86



Theoretical Remarks 1 : Extended NMMF.
The best rank-1 approximation of extended NMMF

87



Theoretical Remarks 1 : Extended NMMF.

88

The best rank-1 approximation of extended NMMF

Equivalent

𝚽𝑖𝑗 = ቊ
0
1

If 𝐗𝑖𝑗 is missing

otherwise



Theoretical Remarks 1 : Extended NMMF.

89

The best rank-1 approximation of extended NMMF

Equivalent

If rank(𝚽) ≦2, 

the matrix can be transformed into the form 

𝚽𝑖𝑗 = ቊ
0
1

If 𝐗𝑖𝑗 is missing

otherwise

Permutation

We can exactly solve rank-1 NMF with missing values by permutation if rank(𝚽) ≦2. 



Theoretical Remarks 2 : Connection to balancing.

90

Transform

Balanced matrix

(Doubly stochastic matrix)

□ Matrix Balancing
Mahito Sugiyama, Hiroyuki Nakahara and Koji Tsuda
"Tensor balancing on statistical manifold“(2017) ICML.



Theoretical Remarks 2 : Connection to balancing.
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Transform

Balanced matrix

(Doubly stochastic matrix)

Balancing condition
□ Matrix Balancing

Mahito Sugiyama, Hiroyuki Nakahara and Koji Tsuda
"Tensor balancing on statistical manifold“(2017) ICML.



Theoretical Remarks 2 : Connection to balancing.

92

Transform

Balanced matrix

(Doubly stochastic matrix)

Balancing condition
□ Matrix Balancing

Rank-1 condition

Its all many-body

𝜃-parameters are 0.

Balanced rank-1 matrix is unique.



□ Describe low-rank condition using (𝜃,𝜂)

Rank-1 condition (𝜼-representation)

ҧ𝜂𝑖𝑗𝑘 = ҧ𝜂𝑖11 ҧ𝜂1𝑗1 ҧ𝜂11𝑘

Rank-1 condition (𝜽-representation)

All many body ҧ𝜃𝑖𝑗𝑘 are 0
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□ Closed Formula of the Best Rank-1 NMMF

□ A1GM: Faster Rank-1 NMF with missing values

Conclusion

The best rank-1 approximation for NMMF

Data structure DAG Infor-Geo

93


