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Tensor low-rank approximation
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・Maps non-negative tensors to distributions, and derive a formula for the best rank-1 approximation 

・Understands the rank-1 approximation of a non-negative tensor as a mean-field approximation

・Proposes a fast Tucker rank approximation (LTR) for nonnegative tensors based on the formula 

Tucker rank of 𝒫 : 𝐿,𝑀,𝑁

≈

𝒫

𝐴

𝒢

𝐶

𝐵

Approximating tensors with low rank tensors reduce memory requirements.

Rank (1,1,1) is called just rank１．

This study...

Many non-negative low-rank approximation methods are based on a gradient method. 

→ It requires appropriate settings for initial values, stopping criterion, and learning rates. 😢😢

I

𝐽

𝐾

Frobenius error or KL error minimization

I

𝐿

𝐽 𝑀

𝐾 𝑁

𝐿 ≤ 𝐼,𝑀 ≤ 𝐽, 𝑁 ≤ 𝐾

In this presentation, Tucker rank is simply referred to as Rank.
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Introduction of log-linear model on poset
Poset 𝑆 is a poset ⇔ for all 𝑠1, 𝑠2, 𝑠3 ∈ 𝑆 the following three properties are satisfied.

(1) Reflexivity: 𝑠1 ≤ 𝑠1 (2) Antisymmetry: 𝑠1 ≤ 𝑠2, 𝑠2 ≤ 𝑠1 ⇒ 𝑠1 = 𝑠2 (3) transitivity:𝑠1 ≤ 𝑠2, 𝑠2 ≤ 𝑠3 ⇒ 𝑠1 ≤ 𝑠3

Log-linear model on poset S

We define the log-linear model on a poset S as a mapping 𝑝: 𝑆 → 0,1 ．Natural parameters 𝜽 describe the model.

𝑝𝜃 𝑥 = exp ෍

𝑠≤𝑥

𝜃 𝑠 𝑥 ∈ 𝑆

𝜃-space

𝜃(s2)

𝜃(s1)

𝜃(s3)

𝑝

𝜂-space

𝜂 𝑥 =෍

𝑠≥𝑥

𝑝 𝑠

𝜂(s2)

𝜂(s1)

𝜂(s3)

𝑝

𝑝𝜂 𝑥 =෍

𝑠∈𝑆

𝜇 𝑥, 𝑠 𝜂 𝑠

Mahito Sugiyama, Hiroyuki Nakahara and Koji Tsuda

"Tensor balancing on statistical manifold“(2017) ICML.

𝜇 𝑥, 𝑠 = ቐ
1

−σ𝑥≤𝑠<𝑦 𝜇 𝑥, 𝑠

0

if 𝑥 = 𝑦
if 𝑥 < 𝑦
otherwise

Möbius function

● ●
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We can also describe the model by expectation parameters 𝜼 if we use Zeta function.



Mapping a poset to a non-negative matrix/tensor. 

𝑆 = 𝑖, 𝑗 |𝑖, 𝑗 = 1,2,⋯𝑛 𝑖1, 𝑗1 ≤ 𝑖2, 𝑗2 ⟺ 𝑖1 ≤ 𝑖2 and 𝑗1 ≤ 𝑗2

11

21

31

12

22

32 33

23

31
𝜽𝟏𝟏 𝜽𝟏𝟐

𝜽𝟐𝟐𝜽𝟐𝟏

𝜼𝟐𝟐

𝜼𝟑𝟐

𝜼𝟐𝟑

𝜼𝟑𝟑

Normalizer

𝑆 = 𝑖, 𝑗, 𝑘 |𝑖, 𝑗, 𝑘 = 1,2,⋯𝑛 𝑖1, 𝑗1, 𝑘1 ≤ 𝑖2, 𝑗2, 𝑘2 ⟺ 𝑖1 ≤ 𝑖2 and 𝑗1 ≤ 𝑗2 and 𝑘1 ≤ 𝑘2

𝑝𝜂(2,2) = 𝜂22 − 𝜂23 − 𝜂32 + 𝜂33

𝑝𝜃(2,2) = exp 𝜃11 + 𝜃12 + 𝜃21 + 𝜃22

𝑝𝜃(𝑖, 𝑗) = exp ෍

𝑖′≤𝑖

෍

𝑗′≤𝑗

𝜃𝑖′𝑗′

𝑝𝜃(𝑖, 𝑗, 𝑘) = exp ෍

𝑖′≤𝑖

෍

𝑗′≤𝑗

෍

𝑘′≤𝑘

𝜃𝑖′𝑗′𝑘′

𝑝𝜃(1,1,2) = exp 𝜃111 + 𝜃112

𝑝𝜂 1,1,2 = 𝜂222 − 𝜂221 − 𝜂122 + 𝜂112

Matrix

Tensor

111

121 122

112

221 222

212211

Normalizer
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Random Variable ：index 𝑖, 𝑗
Sample space ：index set

Value of the probability ：element 𝑃𝑖𝑗

Relation between distribution and matrix 

Random Variable ：index 𝑖, 𝑗, 𝑘
Sample space ：index set

Value of the probability ：element 𝑃𝑖𝑗𝑘

Relation between distribution and matrix 



Various representations of a normalized tensor

𝑝𝜃(𝑖, 𝑗, 𝑘)𝒫𝑖𝑗𝑘 𝑝𝜂(𝑖, 𝑗, 𝑘)
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𝐄𝐚𝐬𝐢𝐞𝐫 𝐭𝐨 𝐟𝐨𝐫𝐦𝐮𝐥𝐚𝐭𝐞 𝐚𝐬 𝐚 𝐜𝐨𝐧𝐯𝐞𝐱 𝐩𝐫𝐨𝐛𝐥𝐞𝐦.

We can describe matrix properties by using 𝜽- and 𝜼- representations. 

Element representation 𝜽- representation 𝜼- representation

One 

to 

One

One 

to 

One



Describe the rank-1 condition of a tensor using (𝜃,𝜂)

Only one index is 1.

𝒫𝑖𝑗𝑘 = exp ෍

𝑖=1

𝐼

෍

𝑗=1

𝐽

෍

𝑘=1

𝐾

𝜃𝑖𝑗𝑘

𝜃𝑖11, 𝜃1𝑗1, 𝜃11𝑘

one-body parameters many-body parameters

A parameter other than a one-body parameter

= exp 𝜃111 exp ෍

𝑖=2

𝐼

𝜃𝑖11 exp ෍

𝑗=2

𝐽

𝜃1𝑗1 exp ෍

𝑘=2

𝐾

𝜃11𝑘

𝒫 = 𝑒𝜃111

1
𝑒𝜃211

𝑒𝜃211+𝜃311

⋮
𝑒𝜃211+𝜃311+⋯+𝜃𝐼11

⊗

1
𝑒𝜃121

𝑒𝜃121+𝜃131

⋮
𝑒𝜃121+𝜃131+⋯+𝜃1𝐽1

⊗

1
𝑒𝜃211

𝑒𝜃211+𝜃311

⋮
𝑒𝜃211+𝜃311+⋯+𝜃11𝐾

⟸

The rank of the tensor that can be represented by the Kronecker product of three vectors is 1
∎

𝜂𝑖11, 𝜂1𝑗1, 𝜂11𝑘
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Rank-1 condition (𝜽-representation)

rank 𝒫 = 1 ⟺ its all many-body 𝜃 parameters are 0



Projection onto rank-1 space

The rank-1 approximation is a projection onto a subspace 𝓑
with all zero many-body natural parameters.

𝜃123

●

●

𝜃11𝑘

𝒫

ത𝒫

Input tensor

𝐷𝐾𝐿 𝒫, ത𝒫

𝑚-projection

ℬ

But!! It takes too much time to get ത𝒫 using the gradient method.😢😢

The projection from any input tensor 𝒫 ∈ ℝ>0
I×J×K

to ℬ is convex.

Number of natural parameters to optimize is (𝐼+ 𝐽+𝐾)

The computational complexity of the Newton method is 𝑂 𝐼 + 𝐽 + 𝐾 3

Let us describe the rank-1 condition with the expectation parameter 𝜼.

𝜃𝑖𝑗𝑘 = 0

…

𝜃1𝐽1

⋮

𝜃11𝐾

𝜃𝐼11

𝜃1𝑗1

𝜼𝟏𝟏𝒌

𝜼𝟏𝟏𝒌

The one-body η is invariant to this 𝑚-projection

Summation in each axial direction is invariant for rank-1 approximation

Projection from 𝒫 𝑜𝑛𝑡𝑜 ℬ
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Describe the rank-1 condition using (𝜃,𝜂)

rank 𝒫 = 1 ⟺ its all many-body 𝜂 parameters are factorizable as 𝜂𝑖𝑗𝑘 = 𝜂𝑖11𝜂1𝑗1𝜂11𝑘

Rank-1 condition (𝜼-representation)

Rank-1 condition (𝜽-representation)
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rank 𝒫 = 1 ⟺ its all many-body 𝜃 parameters are 0



The closed-formula of the best rank 1 approximation

We derive a solution formula of the best rank-1 approximation.

Best rank-1 tensor formula for minimizing KL divergence (𝑑 = 3 )

For any given positive tensor 𝒫 ∈ ℝ>0
𝐼×𝐽×𝐾, its best rank-1 approximation is

ത𝒫𝑖𝑗𝑘 = ෍

𝑗′=1

𝐽

෍

𝑘′=1

𝐾

𝒫𝑖𝑗′𝑘′ ෍

𝑘′=1

𝐾

෍

𝑖′=1

𝐼

𝒫𝑖′𝑗𝑘′ ෍

𝑖′=1

𝐼

෍

𝑗′=1

𝐽

𝒫𝑖′𝑗′𝑘 ,

that is, it is hold that

ത𝒫 = argmin
𝒬:rank 𝒬 =1

𝐷KL 𝒫;𝒬 .

We reproduce the result in K.Huang, et al. "Kullback-Leibler principal component for tensors is not NP-hard." ACSSC 2017

By the way,

Frobenius error 

minimization 

is NP-hard
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rank 𝒫 = 1 ⟺ its all many-body 𝜂 parameters are factorizable as  𝜂𝑖𝑗𝑘 = 𝜂𝑖11𝜂1𝑗1𝜂11𝑘

Rank-1 condition (𝜼-representation)

rank 𝒫 = 1 ⟺ its all many-body 𝜃 parameters are 0

Rank-1 condition (𝜽-representation)



Mean-field approximation and rank-1 approximation

For any given positive tensor 𝒫 ∈ ℝ>0
𝐼×𝐽×𝐾, its best rank-1 approximation is

ത𝒫𝑖𝑗𝑘 = ෍

𝑗′=1

𝐽

෍

𝑘′=1

𝐾

𝒫𝑖𝑗′𝑘′ ෍

𝑘′=1

𝐾

෍

𝑖′=1

𝐼

𝒫𝑖′𝑗𝑘′ ෍

𝑖′=1

𝐼

෍

𝑗′=1

𝐽

𝒫𝑖′𝑗′𝑘

Normalized vector

depending on only 𝑖
Normalized vector

depending on only 𝑗
Normalized vector

depending on only 𝑘

A tensor with 𝑑 indices is a joint distribution with 𝑑 random variables.
A vector with only 1 index is an independent distribution with only one random variable.

Rank-1 approximation approximates a joint distribution by a product of independent distributions.

Best rank-1 tensor formula for minimizing KL divergence (𝑑 = 3 )

Mean-field approximation : a methodology in physics for reducing a many-body problem to a one-body problem.
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◆ Best Rank-1 Approximation for Minimizing the KL divergence

ー Make a mapping from a tensor to a distribution

ー A rank-1 condition using parameters of the distribution

ー Rank-1 Approximation as a mean-field approximation

◆ Legendre Tucker Rank Reduction (LTR)

ー A fast low-rank approximation for non-negative tensors

ー Not based on Gradient method.

ー No need to discuss learning rate, stopping criterion, or initial values

◆ Experiment

◆ Conclusion
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Formulate Tucker rank reduction by relaxing the rank-1 condition

𝜃𝑖𝑗𝑘 = 0

𝜃112

𝜃131

𝜃121

𝜃113

𝜃211
𝜃311

Expand the tensor by focusing on the 𝑘-th axis into a rectangular matrix 𝜃(𝑘)

(mode-𝑘 expansion)

𝜃(1) =

𝜃111 𝜃121 𝜃131 𝜃112 0 0 𝜃113 0 0
𝜃211 0 0 0 0 0 0 0 0
𝜃311 0 0 0 0 0 0 0 0

𝜃(2) =

𝜃111 𝜃211 𝜃311 𝜃112 0 0 𝜃311 0 0
𝜃121 0 0 0 0 0 0 0 0
𝜃131 0 0 0 0 0 0 0 0

𝜃(3) =

𝜃111 𝜃211 𝜃311 𝜃121 0 0 𝜃131 0 0
𝜃112 0 0 0 0 0 0 0 0
𝜃113 0 0 0 0 0 0 0 0

Rank 1,1,1

Two bingos

Two bingos

Two bingos

The first row and first column are the scaling factors
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rank 𝒫 = 1 ⟺ its all many-body 𝜃 parameters are 0

Rank-1 condition (𝜽-representation)



The relationship between bingo and rank

The mode-𝑘 expansion 𝜃(𝑘) of the natural parameter of a tensor 𝒫 ∈ ℝ>0
𝐼1×𝐼2×𝐼3 has 𝑏𝑘 bingos

⇒ rank 𝒫 ≤ 𝐼1 − 𝑏1, 𝐼2 − 𝑏2, 𝐼3 − 𝑏3

𝜃(1) =

𝜃111 𝜃121 𝜃131 𝜃112 0 0 𝜃113 0 0
𝜃211 0 0 0 0 0 0 0 0
𝜃311 𝜃321 𝜃331 𝜃312 𝜃322 𝜃332 𝜃313 𝜃323 𝜃333

𝜃(2) =

𝜃111 𝜃211 𝜃311 𝜃112 0 𝜃312 𝜃311 0 𝜃313
𝜃121 0 𝜃321 0 0 𝜃322 0 0 𝜃323
𝜃131 0 𝜃331 0 0 𝜃332 0 0 𝜃333

𝜃(3) =

𝜃111 𝜃211 𝜃311 𝜃121 0 𝜃321 𝜃131 0 𝜃331
𝜃112 0 𝜃312 0 0 𝜃322 0 0 𝜃332
𝜃113 0 𝜃313 0 0 𝜃323 0 0 𝜃333

One bingo

Bingo rule (𝑑 = 3 )

𝜃123

●

●
𝒫

𝒫′

Input tensor

𝐷𝐾𝐿 𝒫 ,𝒫′

Subspace with one bingo in the mode-1 direction ℬ 1

No bingo

No bingo

Rank 2,3,3
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Example: Reduce the rank of (8,8,3) tensor to (5,8,3) or less

Bingo

Bingo

Bingo

𝜃 is zero

𝜃 can be any
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STEP1 : Choose a bingo location.



The shaded areas do not change their values in the projection.
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𝜃 is zero

𝜃 can be any

STEP1 : Choose a bingo location.

Example: Reduce the rank of (8,8,3) tensor to (5,8,3) or less



Example: Reduce the rank of (8,8,3) tensor to (5,8,3) or less

Replace the partial tensor in the red box using the best rank 1 approximation formula

STEP2 : Replace the bingo part with 

the best rank-1 tensor.

The best tensor is obtained in the specified bingo space.  😄
There is no guarantee that it is the best rank (5,8,3) approximation. 😢 17

𝜃 is zero

𝜃 can be any

STEP1 : Choose a bingo location.



Example: Reduce the rank of (8,8,3) tensor to (5,7,3) or less.

The shaded areas do not change in the projection.
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𝜃 is zero

𝜃 can be any

STEP2 : Replace the bingo part with 

the best rank-1 tensor.

STEP1 : Choose a bingo location.



Experimental results (synthetic data)

LTR is faster with the competitive approximation performance.
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Experimental results (real data)

(92, 112, 400) (9, 9, 512, 512, 3)
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LTR is faster with the competitive approximation performance.



Conclusion
■ Describe the rank-1 condition using (𝜃,𝜂)

Rank-1 condition (𝜼-representation)

ത𝒫𝑖𝑗𝑘 = ෍

𝑗′=1

𝐽

෍

𝑘′=1

𝐾

𝒫𝑖𝑗′𝑘′ ෍

𝑘′=1

𝐾

෍

𝑖′=1

𝐼

𝒫𝑖𝑗′𝑘′ ෍

𝑖′=1

𝐼

෍

𝑗′=1

𝐽

𝒫𝑖′𝑗′𝑘

■ Legendre Tucker Rank Reduction (LTR)

ҧ𝜂𝑖𝑗𝑘 = ҧ𝜂𝑖11 ҧ𝜂1𝑗1 ҧ𝜂11𝑘

・LTR is based on mean-field approximation．
・LTR is faster with the competitive approximation performance as existing methods.

・No need to discuss learning rate, stopping criteria, or initial values

Rank-1 condition (𝜽-representation)

All many body ҧ𝜃𝑖𝑗𝑘 are 0

■ Best rank-1 tensor formula for minimizing KL divergence

Bingo reduces rank

Low-rank condition (𝜽-representation)

●

●

𝜃11𝑘

𝒫

ത𝒫

Input

𝐷𝐾𝐿 𝒫, ത𝒫

ℬ𝜃1𝑗1

𝜃𝑖𝑗𝑘

We discuss low-rank approximation as a problem of projection in (𝜽, 𝜼)-space
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