

Inter-University Research Institute Corporation / Research Organization of Information and Systems

National Institute of Informatics

Machine Learning and Information Geometry

Introduction to Intelligent Systems Science II

Mahito Sugiyama

Learning Hierarchical Distribution (1/2)

Learning Hierarchical Distribution (2/2)

MLE	Iog(prob.) = -10.41 + 9.43[Bread] + 8.52[Milk] - 9.84[Apple] - 9.03[Bread&Milk] + 9.43[Milk&Apple]					
	Bread	Milk	Apple	Prob. from data	Learned prob.	
Boltzmann	×	Х	×	?	0.0000300109	
machine	\bigcirc	Х	×	0.375	0.3749599867	
\frown	×	\bigcirc	×	?	0.1499903954	
Bread	\rightarrow ×	\times	\bigcirc	?	0.000000016	
bicad	\bigcirc	\bigcirc	×	0.375	0.2250096042	
	\bigcirc	\times	\bigcirc	?	0.0000200043	
\frown	×	\bigcirc	\bigcirc	0.25	0.0999895960	
Milk — (Apple)	\bigcirc	\bigcirc	\bigcirc	?	0.1500004008	

Matrix Balancing

$$\begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$$

Matrix Balancing

Find **r** and **s**: (Make doubly stochastic matrix)

$$\begin{bmatrix} r_{1} & 0 \\ 0 & r_{2} \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} s_{1} & 0 \\ 0 & s_{2} \end{bmatrix}$$

$$= \begin{bmatrix} r_{1}s_{1}p_{11} & r_{1}s_{2}p_{12} \\ r_{2}s_{1}p_{21} & r_{2}s_{2}p_{22} \end{bmatrix} \xrightarrow{} \sum_{j} r_{1}s_{j}p_{1j} = 1$$

$$\xrightarrow{} \sum_{j} r_{2}s_{j}p_{2j} = 1$$

$$\xrightarrow{} \sum_{i} r_{i}s_{1}p_{i1} = 1 \sum_{i} r_{i}s_{2}p_{i2} = 1$$

Sinkhorn-Knopp Algorithm

- Alternately rescale all rows and columns of a matrix *P* to sum to 1
- Commonly used to compute entropy-regularized Optimal transport (Wasserstein distance)
 - [Cuturi, 2013]

Revisit Matrix Balancing

*p*₁₁ *p*₁₂ *p*₁₃

*p*₂₁ *p*₂₂ *p*₂₃

*p*₃₁ *p*₃₂ *p*₃₃ [Sugiyama, Nakahara, Tsuda, ICML2017]

$$= \log p_{ij}$$

- log p_{i-1j} - log p_{ij-1}
+ log p_{i-1j-1}

$$\theta_{ij} = \log p_{ij}$$

- $\log p_{i-1j} - \log p_{ij-1}$
+ $\log p_{i-1j-1}$

$$\theta_{ij} = \log p_{ij}$$

- $\log p_{i-1j} - \log p_{ij-1}$
+ $\log p_{i-1j-1}$

$$\theta_{ij} = \log p_{ij}$$

- $\log p_{i-1j} - \log p_{ij-1}$
+ $\log p_{i-1j-1}$

Balancing as Constraints on η and θ

 $\theta_{ij} = \log p_{ij}$ - $\log p_{i-1j} - \log p_{ij-1}$ + $\log p_{i-1j-1}$

Matrix balancing \Leftrightarrow Satisfy $\eta_{i1} = \eta_{1i} = 3 - i + 1$ with keeping all θ_{ij}

Introduce Partial Order Structure

Partially Ordered Sets (Posets)

Incidence Algebra

- Incidence algebra is defined over a poset (S, \leq)
 - (Closed) Interval $[a, b] = \{s \in S \mid a \le s \le b\}$
- Members of the incidence algebra are functions $\alpha(a, b)$ from intervals [a, b] to a scalar with $(\alpha + \beta)(a, b) = \alpha(a, b) + \beta(a, b)$ $(\alpha\beta)(a, b) = \sum_{a \le x \le b} \alpha(a, x)\beta(x, b)$ (convolution)

Special Elements

- Delta function δ : $\delta(a,b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise} \end{cases}$
- Zeta function ζ: (integral)

$$\zeta(a,b) = \begin{cases} 1 & \text{if } a \le b \\ 0 & \text{otherwise} \end{cases}$$

• Möbius function $\mu = \zeta^{-1}$: $\zeta \mu = \delta$ (differential)

(ζ, μ) Leads to Non-Singularity

- For a poset (S, \leq) , let $S = \{s_1, s_2, ..., s_n\}$
- Let us define the zeta matrix $\mathbf{Z} \in \{0, 1\}^{n \times n}$ as $z_{ij} = \zeta(s_i, s_j)$
- Relationship between ζ and μ guarantees that
 Z is always regular:

$$\mathbf{Z}^{-1} = \mathbf{M}$$
 such that $m_{ij} = \mu(s_i, s_j)$

- $\mathbf{M} \in \mathbb{Z}^{n \times n}$

Möbius Inversion Formula

• Given a poset *S*, for any functions $f,g: S \to \mathbb{R}$, the Möbius inversion formula is given as

$$g(x) = \sum_{s \in S} \zeta(s, x) f(s) = \sum_{s \leq S} \zeta(s, x) f(s) = \sum_{s \leq x} f(s)$$
$$f(x) = \sum_{s \in S} \mu(s, x) g(s) = \sum_{s \leq S} \mu(s, x) g(s)$$

E.g.1: Inclusion-Exclusion Principle

 $A \cup B \cup C$ G B∩C Ά∩B∩C

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B|$$

- $|A \cap C| - |B \cap C| + |A \cap B \cap C|$

$$f(X) = |X| \quad g(X) = |X \setminus \bigcup Y|$$

$$f(X) = \sum_{Y \le X} g(Y)$$

$$g(X) = \sum_{Y \le X} \mu(Y, X) f(Y)$$

Log-Linear Model on Poset [ICML2017]

• For probability $p: S \to (0, 1)$ with $\sum_{x \in S} p(x) = 1$, introduce θ and η as

$$\theta_x = \sum_{s \in S} \mu(s, x) \log p(s),$$

$$\eta_x = \sum_{s \in S} \zeta(x, s) p(s) = \sum_{s \ge x} p(s)$$

• From the Möbius inversion formula, log-linear model is:

$$\log p(x) = \sum_{s \in S} \zeta(s, x) \theta_s = \sum_{s \le x} \theta_s$$

- In the matrix form: $\log p = \mathbb{Z}\theta$

Log-Linear Model on Poset

Log-Linear Model on Poset

Log-Linear Model on Poset

Exponential Family

- The log-linear model on posets belongs to the exponential family
- θ : Natural parameter
- η : Expectation parameter

Binary Log-Linear Model

(= Boltzmann machine)

[Luo & Sugiyama, AAAI2019]

19/29

Binary Log-Linear Model

19/29

Dually Flat Structure

• Let $\psi(\theta) = -\theta(\bot)$ (convex, partition function)

$$\psi(\theta) \xrightarrow{\text{Legendre transformation}} \phi(\eta) = \sum_{x \in S} p(x) \log p(x)$$

• $(\psi(\theta), \phi(\eta))$ leads to dually flat coordinate system (θ, η) : $\nabla \psi(\theta) = \eta, \quad \frac{\partial}{\partial \theta_x} \psi(\theta) = \eta_x$ $\nabla \phi(\eta) = \theta, \quad \frac{\partial}{\partial \eta_x} \phi(\eta) = \theta_x$

Riemannian Metric (Fisher Information)

$$\frac{\partial}{\partial \theta_x} \frac{\partial}{\partial \theta_y} \psi(\theta) = \frac{\partial}{\partial \theta_x} \eta_y = \sum_{s \in S} \zeta(x, s) \zeta(y, s) p(s) - \eta_x \eta_y$$
$$\frac{\partial}{\partial \eta_x} \frac{\partial}{\partial \eta_y} \phi(\eta) = \frac{\partial}{\partial \eta_x} \theta_y = \sum_{s \in S} \mu(s, x) \mu(s, y) p(s)^{-1}$$
$$\mathbb{E}_s \left[\frac{\partial}{\partial \theta_x} \log p(s) \frac{\partial}{\partial \eta_y} \log p(s) \right] = \delta(x, y)$$

Riemannian Metric (Fisher Information)

$$\mathbb{E}_{s}\left[\frac{\partial}{\partial\theta_{x}}\log p(s)\frac{\partial}{\partial\theta_{y}}\log p(s)\right] = \sum_{s\in S}\zeta(x,s)\zeta(y,s)p(s) - \eta_{x}\eta_{y}$$
$$\mathbb{E}_{s}\left[\frac{\partial}{\partial\eta_{x}}\log p(s)\frac{\partial}{\partial\eta_{y}}\log p(s)\right] = \sum_{s\in S}\mu(s,x)\mu(s,y)p(s)^{-1}$$
$$\mathbb{E}_{s}\left[\frac{\partial}{\partial\theta_{x}}\log p(s)\frac{\partial}{\partial\eta_{y}}\log p(s)\right] = \delta(x,y)$$

Mixed Coordinate System

• Many problems are formulated as coordinate mixing

$$P = (\theta_1, \theta_2, ..., \theta_{i-1}, \theta_i, \theta_{i+1}, ..., \theta_n) = e-\text{projection}$$

$$Q = (\eta_1, \eta_2, ..., \eta_{i-1}, \theta_i, \theta_{i+1}, ..., \theta_n) = m-\text{projection}$$

$$R = (\eta_1, \eta_2, ..., \eta_{i-1}, \eta_i, \eta_{i+1}, ..., \eta_n) = m-\text{projection}$$

Pythagorean theorem: (Q is always unique) KL(P, R) = KL(P, Q) + KL(Q, R)

Mixed Coordinate System (Example)

• Many problems are formulated as coordinate mixing

P = (0, 0, ..., 0, 0, 0, 0, ..., 0) → Uniform dist.
Q = (
$$\hat{\eta}_1, \hat{\eta}_2, ..., \hat{\eta}_{i-1}, 0, 0, ..., 0$$
)
R = ($\hat{\eta}_1, \hat{\eta}_2, ..., \hat{\eta}_{i-1}, \hat{\eta}_i, \hat{\eta}_{i+1}, ..., \hat{\eta}_n$) → Empirical dist.
Pvthagorean theorem: (*O* is always unique)

Pythagorean theorem: (Q is always unique) KL(P, R) = KL(P, Q) + KL(Q, R)

Two Submanifolds

Gradient methods for *e*-projection

- *e*-projection is convex optimization
- Gradient descent (first-order):

 $\theta_{\text{next}} \leftarrow \theta - \varepsilon(\eta - \hat{\eta}_{\text{target}})$

Natural gradient (second-order)

 $\theta_{\mathsf{next}} \leftarrow \theta - G^{-1}(\eta - \hat{\eta}_{\mathsf{target}})$

- *G* is Fisher information matrix w.r.t. θ
- Coordinate descent [Hayashi, Sugiyama, Matsushima, DSAA2020]

Boltzmann Machine Training

Boltzmann Machine Training

Matrix Balancing

3x3 matrix as poset:

Summary

- Information geometric formulation for partial order structures
 - Learning process can be achieved as a projection in the parameter space (dually flat manifold)
- Several applications
 - Boltzmann machines
 - Matrix (Tensor) balancing