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Example of Learning from Data

(from miss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

*1,2,4,7,... — What are succeeding numbers?
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Example of Learning from Data

(from miss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

*1,2,4,7,... — What are succeeding numbers?
1,2,4,7,11,16,... (a,=a,_1+n—-1)

1,2,4,7,12,20,... (a,=a,_1+a,,+1)
1,2,4,7,13,24,... (a,=a,1+a,,+a,_3)
1,2,4,7,14, 28 (divisors of 28)

2, 4,7,1,1,5, ... (m=23. .. ande =2.718...)
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Example of Learning from Data

(from miss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

*1,2,4,7,... — What are succeeding numbers?
1,2,4,7,11,16,... (a,=a,_1+n—-1)

1,2,4,7,12,20,... (a,=a,_1+a,,+1)
1,2,4,7,13,24,... (a,=a,1+a,,+a,_3)
1,2,4,7,14, 28 (divisors of 28)

2,4,7,1,1,5, .. (7=3. .. ande =2.718...)

* 1344 results (!) in the online encyclopedia (https://oeis.org/)
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https://oeis.org/

Learning as Scientific Problem

» Which is the correct answer (or )
for succeeding numbers of 1,2,4,7,... ?

- Any answer is possible!
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Learning as Scientific Problem

» Which is the correct answer (or )
for succeeding numbers of 1,2,4,7,... ?

- Any answer is possible!
* We should take two points into consideration:
(i) We need to formalize the problem of “learning”

o There are ( and ) in learning,
which are different from “computation”

(i) Learningis an
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Learning of Binary Classifier
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Learning of Binary Classifier
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Example: Perceptron (by F. Rosenblatt, 1958)

- Learning target: two subsets F,G CR4s.t. FNG =0

- Assumption: F and G are ;
There exists a function (classifier) f.(x) = (w,,x) + b s.t.
f.x)>0 VxE€EF, f.x)<0 VxecG
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Example: Perceptron (by F. Rosenblatt, 1958)

- Learning target: two subsets F,G CR4s.t. FNG =0

- Assumption: F and G are ;
There exists a function (classifier) f.(x) = (w,,x) + b s.t.
f.x)>0 VxE€EF, f.x)<0 VxecG

- Hypotheses: hyperplanes on R¢

- If we consider a linear equation f(x) = (w, x) + b,
each line can be uniquely specified by a pair of
two parameters (w, b) ( )
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Example: Perceptron (by F. Rosenblatt, 1958)

- Data: a sequence of pairs (x;, 1), (x2,,), ...

- (x;,y:): (areal-valued vector in R4, a label)
= xi EFUG,yl 6{1,—1},
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Learning Model for Perceptron

fX)=wx+b=0
~— A hypothesis, a hyperplane
in general, is uniquely specified
by a pair (w, b)

(x;, 1)

) Data
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Learning Procedure of Perceptron

1. w < 0, b < 0 (or asmall random value) // initialization
2. fori=1,2,3,... do
3. Receivei-th pair (x;,y;)

4. Compute a = Zj.lzl wix! +b

5. ify;-a<0then /1 x; is misclassified
6. w < w+ y;X; // update the weight
7 b« b+y; // update the bias
8. endif

9. end for
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Correctness of Perceptron

* Itis guaranteed that a perceptron always converges
to a correct classifier

- A correct classifier is a function f s.t.
f(x)>0 Vx€EF,
fx)<0 VxeaG

* Note: there are (infinitely) many functions
that correctly classify F and G

- A perceptron converges to one of them
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Summary: Perceptron

Target
Representation

Data
Algorithm
Correctness

Two disjoint subsets of R4

Two parameters (w, b) of linear
equation f(x) = (w,x)+b

Real vectors from target subsets
Perceptron

Convergence theorem
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What is Graph?

* A graph is an object consisting of (nodes) connected with

- Many examples in real-world, e.g., chemical compounds

» Agraphis if the edges are directed,
otherwise it is

» A graph is written as G = (V, E), where
V is a vertex set and E is an edge set

. can be associated with vertices and/or edges
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Example of Graph

1 * Agraph G = (V,E, ¢)
-V ={1,2,3,4}
4 p) - E={1,2},{1,4},{2,3},{2,4},{3,4}}
- ¢(1) = green, ¢(2) = blue,
$(3) = red, $(4) = blue
- ¢({1,2}) = zigzaqg, ¢({1,4}) = straight,

3 $(12,3)) = zigzag, $({2, 4}) = straight,
¢({3,4}}) = straight
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Example of Graph

1 * The adjacency matrix
01 0 1
1 0 1 1
4 2 A= 0O 1 0 1
1 1 1 O
3
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ML on Graphs

* How to perform machine learning on ?
- Each object is a graph, so we have a collection of graphs

* Classification (or regression) on graphs is nontrivial problem

- The difficulty comes from the fact that measuring the (or
distance) between graphs is nontrivial

. computes the similarity between graphs

. are recently studied, while there is no
significant difference between their performances

- They share the core idea (message passing)
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Similarity between Graphs
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Similarity between Graphs

Similarity = 14 Graph kernel
"I \\\
: \
§ Similarity = 12
\‘ !
\‘ )
s )

S

Similarity = 1 2 e
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Kernels on Structured Data

* Given objects X and Y, them into substructures S and
T
* The K by Haussler (1999) is:
Kr(X,Y) = Z Khase(s, £)
seS,teT

- e.g. X isagraph and S is the set of all subgraphs

» Since naively computing this kernel is expensive,
many efficient graph kernels have been propsoed
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Example
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Vertex Label Histogram Kernel

G G’

00
2 1 1 ,

Kyu(G,G')=22+10+1-1=
5 0 1 vH( ) 0 5

G
G/

16/45



Edge Label Histogram Kernel

G G’

G 3 2 2 o
G 1 2 KEH(G,G)—31+22 /
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Vertex-Edge Label Histogram Kernel

G G’
00060600000 06100100 00001000

G1 1 1 0 o0 O o0 1 1 0 o0 o0 ,
Kyen(G, G') = 3
G1 0 O O O O o0 O 2 0 o0 o0 ven(G, G)
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Product Graph

¢ The GX — (VXaEX’ ¢><) OfG — (V’E’ ¢)r
Gl — (V’,E,,¢’):
Vi ={(,0") eV xV"| ¢(v) = ¢'(V')},
(u,v) €E, (u',v)eF,

Ey =1 ((u,u"),(v,0) e Vy xVy d(u,v) = ¢’ (W', v")

- All labels are inherited
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Example of Product Graph

1 (2,5) (4,7)

> 7
4 , _
X Q;\HJ‘ o (3,6)

(4,5)
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k-Step Random Walk Kernal

* The (fixed-length-k)
between G and G’:
Vx|
kk@G,6) =Y [AOAQ + LAl + A% + -+ AkAﬁ]”
ij=1 N

(4> 0)

- A, The adjacency matrix of the product graph
- Theij entry of AL shows the number of paths fromi to j
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Geometric Random Walk Kernel (1/2)

* K can be directly computed if 1, = A7 ( ),
resulting in the ;
Vx|
Kor(G,G") = ) [1°4% + A1AL + 2242 + 3A% + - Ji;
ij=1

= l% [i mi] - %il (=247,

I,j=1L¢=0 i j i,j=1
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Geometric Random Walk Kernel (2/2)

» Geometric random walk kernel is well-defined only if
(Ux max IS the max. eigenvalue of Ay)

* Oy (min. degree) < d_>< (average degree) < < Ay (max. degree)
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Weisfeiler-Lehman Kernel

Given graphs 1st iteration
(5,234 2,35 245 X75,234
@@ ﬂ@b@
/ C14 314 D¢ 14323 D¢
Re-labeling after 1st iteration After 1st iteration
14 —»6 3245 —» 10 (13—(8) (9)—13)
23 7 41135 > 11 \ ,
23538  4,1235 = 12 1 10 12 10
245—>»9 5234 —» 13
©® © ¢ © @ ¢
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Weisfeiler-Lehman Kernel

* The kernel value becomes:

CJabel | [1 2 3 4 5 6 7 8 9 10 11 12 13
sV =2 1111 2 0 1 0 1 0
$(GD 12 1711110 1 1

K., (G,G") =11

* An important building block of GNNs
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Performance Comparison
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graphkernels Package

A package for graph kernels available in R and Python

* R
https://CRAN.R-project.org/package=graphkernels

* Python:
https://pypl.org/project/graphkernels/

* Paper:
https://doi.org/10.1093/bioinformatics/btx602

27145


https://CRAN.R-project.org/package=graphkernels
https://pypi.org/project/graphkernels/
https://doi.org/10.1093/bioinformatics/btx602

Kernel-based Classification: SVM

- Adataset D is by f < y;f(x;)>0,Vie{l,2,..,n}

* The is the distance from the classification hyperplane to
the closest data point

* Support vector machines (SVMs) tries to find a hyperplane that
the margin

- Can be viewed as an extension of perceptron
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Margin

(W, x)+w,=0
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Formulation of SVMs

 The distance from a point x; to a hyperplane
f(x)=(w,x)+wy=0Iis
|fx)]  [(w,x;) + wy
lw]| [|wl|
* The margin maximization problem can be written as

M :
max —— subjecttoy;f(x;) > M,i € {1,2,...,n}
w,wo,M ||w|

.....
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Hard Margin SVMs

« We can eliminate M and obtain

1 .
max —— subjectto y;f(x;) > 1,i €{1,2,...,n}
wwy [|wl|

* This is equivalent to
min [|[w||> subjecttoy;f(x;) >1,i€{1,2,...,n}

w,Wg

- The standard formulation of
- There are data points x; satisfying y, f(x;) = 1, called
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Margin

(W, x)+w,=0
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Soft Margin (1/2)

 Datasets are not often separable

» Extend SV classification to by relaxing (w, x) + wy > 1

« Change the constraint y; f(x;) > 1 using the ¢ to
Yif ) =y (w,x) +wy) 21-¢;, i€{l,2,..,n}
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Soft Margin (2/2)

« The formulation of (C-SVM) is
min —||w||2 + CZ £;
w.Wo, i€{1,2,....n}
sty f(x)>1-¢&,8>0,ie{1,2,..,n}
- Cis called the
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Soft Margin

Cis large Cis small
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Data Point Location

* ¥;f(x;) > 1: x; is outside margin

- These points do not affect to the classification hyperplane
* y;f(x;) = 1. x; ison margin
* y;f(x;) < 1: x; is inside margin

- These points do not exist in hard margin

* Points on margin and inside margin are support vectors
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Dual Problem (1/2)

* The formulation of C-SVM
min —||w||2 + CZ £;

wwofz i€{1,2,....n}
sty f(x)>1-¢&,6>0,ie41,2,..,n}
is called the

* This is usually solved via the
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Dual Problem (2/2)

* The iS given as
1
max —> Z ;A iy i{Xi, X ) + Z a;
1,j€[n] ie[n]
s.t. Zociyi =0,0<a <C,i€|n]

ie[n]
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Extension to Nonlinear Classification

* To achieve nonlinear classification, convert each data point x to
some point ¢(x), and f(x) becomes

f(x) = (w, $(x)) + wy
* The dual problem becomes
mo?x —% Z ociocjyiyj(qﬁ(xi),qb(xj)) + Z i S.t. Z AV = 0, O S i < C,l &

1,j€[n] ie[n] ie[n]
- Only the dot product (¢(x;), ¢(x;)) is used!
- We do not even need to know ¢(x;) and ¢(x;)
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C-SVM with Kernel Trick

» Using the K such that K(x;, x;) = (¢(x)), p(x)), we
have
1
max —> Z a;a;yyiK(x;,x;) + Z Q;
1,j€[n] ie[n]
S.t. ZszJ’i =0,0<qa;<C,i€|n]
ie[n]

- The technique of using K is called

« We can use graph kernels for K!
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Positive Definite Kernel

« AkernelK : OxQ —- Risa

() K(x,y) =K(y,x)

(ii) For x, x,, ..., x,, the n X n matrix

K(xl’ xl)
(Kij) =

_K(xla xn)

K(xn’ xl)

K(xl’l’ xn)_

is positive (semi-)definite, that is, Z?}.zl cic;K(x;,x;) > 0

foranyc,c,,...,c, € R

- (K;;) € R™" is called the
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Popular Positive Definite Kernels

* Linear Kernel
K(x,y)=(x,y)
« Gaussian (RBF) kernel

1
K(x,y) = exp (= lx - yiP)

* Polynomial Kernel
Kx,y)=({x,y)+c) c,deR
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Simple Kernels

« The all-ones kernel
K(x,y) =1
« The delta (Dirac) kernel

1 ifx=y,

K®* ¥ =10 otherwise
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Closure Properties of Kernels

* For two kernels K; and K,, K; + K, is a kernel

* For two kernels K; and K,, the product K; - K, is a kernel
* For a kernel K and a positive scalar A € R*, AK is a kernel
* For a kernel K on a set D, its zero-extension:

_ ) K(x,y) ifx,yeD,
Ko(x, y) = 0 otherwise

is a kernel
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Summary

* Introduction to ML and its basic concepts

 Graph kernels for graph structured data

« Kernel-based ML methods, such as SVM

- There are many other options, e.qg. kernel PCA, kernel k-means, kernel
ridge regression, ...
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