

Inter-University Research Institute Corporation / **Research Organization of Information and Systems**

National Institute of Informatics

Machine Learning for Graph Structured Data

Introduction to Big Data Science (ビッグデータ概論)

Mahito Sugiyama (杉山麿人)

(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

• 1, 2, 4, 7, $\ldots \rightarrow$ What are succeeding numbers?

(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

• 1, 2, 4, 7, $\ldots \rightarrow$ What are succeeding numbers? 1, 2, 4, 7, 11, 16, ... $(a_n = a_{n-1} + n - 1)$

(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

• 1, 2, 4, 7, $\ldots \rightarrow$ What are succeeding numbers? 1, 2, 4, 7, 11, 16, ... $(a_n = a_{n-1} + n - 1)$ 1, 2, 4, 7, 12, 20, ... $(a_n = a_{n-1} + a_{n-2} + 1)$

(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

• 1, 2, 4, 7, $\ldots \rightarrow$ What are succeeding numbers?

(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

• 1, 2, 4, 7, $\ldots \rightarrow$ What are succeeding numbers?

1, 2, 4, 7, 11, 16, ... $(a_n = a_{n-1} + n - 1)$ 1, 2, 4, 7, 12, 20, ... $(a_n = a_{n-1} + a_{n-2} + 1)$ 1, 2, 4, 7, 13, 24, ... $(a_n = a_{n-1} + a_{n-2} + a_{n-3})$ 1, 2, 4, 7, 14, 28 (divisors of 28)

(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

• 1, 2, 4, 7,... \rightarrow What are succeeding numbers?

1, 2, 4, 7, 11, 16, ... $(a_n = a_{n-1} + n - 1)$ 1, 2, 4, 7, 12, 20, ... $(a_n = a_{n-1} + a_{n-2} + 1)$ 1, 2, 4, 7, 13, 24, ... $(a_n = a_{n-1} + a_{n-2} + a_{n-3})$ 1, 2, 4, 7, 14, 28 (divisors of 28) 1, 2, 4, 7, 1, 1, 5, ... $(\pi = 3.1415... \text{ and } e = 2.718...)$

(from mlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

• 1, 2, 4, 7, $\ldots \rightarrow$ What are succeeding numbers?

1, 2, 4, 7, 11, 16, ... $(a_n = a_{n-1} + n - 1)$ 1, 2, 4, 7, 12, 20, ... $(a_n = a_{n-1} + a_{n-2} + 1)$ 1, 2, 4, 7, 13, 24, ... $(a_n = a_{n-1} + a_{n-2} + a_{n-3})$ 1, 2, 4, 7, 14, 28 (divisors of 28) 1, 2, 4, 7, 1, 1, 5, ... $(\pi = 3.1415... \text{ and } e = 2.718...)$

• 1344 results (!) in the online encyclopedia (https://oeis.org

Learning as Scientific Problem

- Which is the correct answer (or generalization) for succeeding numbers of $1, 2, 4, 7, ...$?
	- **–** Any answer is possible!

Learning as Scientific Problem

- Which is the correct answer (or generalization) for succeeding numbers of 1, 2, 4, 7, … ?
	- **–** Any answer is possible!
- We should take two points into consideration:
	- (i) We need to formalize the problem of "learning"
		- There are two agents (teacher and learner) in learning, which are different from "computation"
	- (ii) Learning is an infinite process

Learning of Binary Classifier

Learning of Binary Classifier

Example: Perceptron (by F. Rosenblatt, 1958)

- Learning target: two subsets $F,G\subseteq\mathbb{R}^d$ s.t. $F\cap G=\emptyset$
	- **–** Assumption: *F* and *G* are linearly separable: There exists a function (classifier) $f_*(x) = \langle w_*, x \rangle + b$ s.t. $f_*(x) > 0 \quad \forall x \in F, \qquad f_*(x) < 0 \quad \forall x \in G$

Example: Perceptron (by F. Rosenblatt, 1958)

- Learning target: two subsets $F,G\subseteq\mathbb{R}^d$ s.t. $F\cap G=\emptyset$
	- **–** Assumption: *F* and *G* are linearly separable: There exists a function (classifier) $f_*(x) = \langle w_*, x \rangle + b$ s.t. $f_*(x) > 0 \quad \forall x \in F, \qquad f_*(x) < 0 \quad \forall x \in G$
- **Hypotheses**: hyperplanes on ℝ
	- **–** If we consider a linear equation $f(x) = \langle w, x \rangle + b$, each line can be uniquely specified by a pair of two parameters (w, b) (hypothesis)

Example: Perceptron (by F. Rosenblatt, 1958)

- **Data**: a sequence of pairs $(x_1, y_1), (x_2, y_2), ...$
	- $(\bm{x_i}, y_i)$: (a real-valued vector in \mathbb{R}^d , a label)
	- **-** x_i ∈ F ∪ G , y_i ∈ {1, -1}, $y_i = 1$ $(y_i = -1)$ if $x_i \in F$ $(x_i \in G)$

Learning Model for Perceptron

Learning Procedure of Perceptron

Correctness of Perceptron

- It is guaranteed that a perceptron always converges to a correct classifier
	- $-$ A correct classifier is a function f s.t.

 $f(x) > 0 \quad \forall x \in F,$

 $f(x) < 0 \quad \forall x \in G$

- **–** The convergence theorem
- Note: there are (infinitely) many functions that correctly classify F and G
	- **–** A perceptron converges to one of them

Summary: Perceptron

What is Graph?

- A graph is an object consisting of vertices (nodes) connected edges
	- **–** Many examples in real-world, e.g., chemical compounds
- A graph is directed if the edges are directed, otherwise it is undirected
- A graph is written as $G = (V, E)$, where V is a vertex set and E is an edge set
- Labels can be associated with vertices and/or edges

Example of Graph

- A graph $G = (V, E, \phi)$
	- $-V = \{1, 2, 3, 4\}$
	- $-E = \{\{1, 2\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}\$
	- $-\phi(1)$ = green, $\phi(2)$ = blue,
		- $\phi(3)$ = red, $\phi(4)$ = blue
	- $\phi({1, 2}) = \text{zigzag}, \phi({1, 4}) = \text{straight},$ $\phi({2, 3})$ = zigzag, $\phi({2, 4})$ = straight, $\phi({3, 4}) =$ straight

Example of Graph

ML on Graphs

- How to perform machine learning on graphs?
	- **–** Each object is a graph, so we have a collection of graphs
- Classification (or regression) on graphs is nontrivial problem
	- **-** The difficulty comes from the fact that measuring the similarity distance) between graphs is nontrivial
- Graph kernel computes the similarity between graphs
- Graph Neural Networks are recently studied, while there is r significant difference between their performances
	- **–** They share the core idea (message passing)

Similarity between Graphs

Similarity between Graphs

Kernels on Structured Data

- Given objects X and Y , decompose them into substructures T
- The R-convolution kernel K_R by Haussler (1999) is:

$$
K_R(X, Y) = \sum_{s \in S, t \in T} K_{\text{base}}(s, t)
$$

 $-$ e.g. X is a graph and S is the set of all subgraphs

• Since naïvely computing this kernel is expensive, many efficient graph kernels have been propsoed

Vertex Label Histogram Kernel

Edge Label Histogram Kernel

Vertex-Edge Label Histogram Kernel

Product Graph

- The direct product $G_{\times} = (V_{\times}, E_{\times}, \phi_{\times})$ of $G = (V, E, \phi)$, $G' = (V', E', \phi')$: $V_{\times} = \{ (v, v') \in V \times V' \mid \phi(v) = \phi'(v') \},\$ $E_{\times} = \left\{ (u, u'), (v, v') \in V_{\times} \times V_{\times} \right\}$ | | | | | | | $(u, v) \in E, (u', v') \in E',$ $\phi(u, v) = \phi'(u', v')$ }
	- **–** All labels are inherited

Example of Product Graph

-Step Random Walk Kernal

• The k -step (fixed-length- k) random walk kernel between G and G' :

$$
K_{\times}^{k}(G, G') = \sum_{i,j=1}^{|V_{\times}|} \left[\lambda_{0} A_{\times}^{0} + \lambda_{1} A_{\times}^{1} + \lambda_{2} A_{\times}^{2} + \dots + \lambda_{k} A_{\times}^{k} \right]_{ij}
$$

($\lambda_{l} > 0$)

- A_{\times} : The adjacency matrix of the product graph
- The ij entry of A^n_{\times} $\frac{n}{\times}$ shows the number of paths from i to j

Geometric Random Walk Kernel (1/2)

• K_{\times}^{∞} $\int_{\mathsf{X}}^{\infty}$ can be directly computed if $\lambda_{\ell} = \lambda^{\ell}$ (geometric series), resulting in the geometric random walk kernel:

$$
K_{GR}(G, G') = \sum_{i,j=1}^{|V_{\times}|} \left[\lambda^{0} A_{\times}^{0} + \lambda^{1} A_{\times}^{1} + \lambda^{2} A_{\times}^{2} + \lambda^{3} A_{\times}^{3} + \cdots \right]_{ij}
$$

=
$$
\sum_{i,j=1}^{|V_{\times}|} \left[\sum_{\ell=0}^{\infty} \lambda^{\ell} A_{\times}^{\ell} \right]_{ij} = \sum_{i,j=1}^{|V_{\times}|} \left[(I - \lambda A_{\times})^{-1} \right]_{ij}
$$

Geometric Random Walk Kernel (2/2)

- Geometric random walk kernel is well-defined only if $\lambda < 1/j$ ($\mu_{\times,\text{max}}$ is the max. eigenvalue of A_{\times})
- δ_\times (min. degree) $\leq d_\times$ (average degree) $\leq \mu_{\times,\max} \leq \Delta_\times$ (max. degree)

Weisfeiler–Lehman Kernel

Weisfeiler–Lehman Kernel

• The kernel value becomes:

$$
\begin{bmatrix}\n\text{label} \\
\phi(G)^{(1)} \\
\phi(G')^{(1)}\n\end{bmatrix} =\n\begin{bmatrix}\n1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
2 & 1 & 1 & 1 & 1 & 2 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1\n\end{bmatrix}
$$
\n
$$
K_{WL}^{1}(G, G') = 11
$$

• An important building block of GNNs

Performance Comparison

graphkernels Package

- A package for graph kernels available in R and Python
- R: https://CRAN.R-project.org/package=graphkernels
- Python: https://pypi.org/project/graphkernels/
- Paper: https://doi.org/10.1093/bioinformatics/btx602

Kernel-based Classification: SVM

- A dataset D is separable by $f \iff y_i f(x_i) > 0$, $\forall i \in \{1, 2, ..., n\}$
- The margin is the distance from the classification hyperplan the closest data point
- Support vector machines (SVMs) tries to find a hyperplane th maximizes the margin
	- **–** Can be viewed as an extension of perceptron

Margin

Formulation of SVMs

- The distance from a point \boldsymbol{x}_{i} to a hyperplane $f(\pmb{x}) = \langle \pmb{w}, \pmb{x} \rangle + w_0 = \mathsf{0}$ is $|f(\boldsymbol{x}_i)|$ $\|w\|$ = $|\langle \mathbf{w}, \mathbf{x}_i \rangle + w_0|$ $\|w\|$
- The margin maximization problem can be written as max $\boldsymbol{w},\!\omega_0,\!M$ \overline{M} $\|w\|$ subject to $y_{i} f(\boldsymbol{x}_{i}) \geq M, i \in \{1,2,...\,,n\}$

 $- M = \min_{i \in \{1, 2, ..., n\}} |\langle w, x_i \rangle + w_0|$

Hard Margin SVMs

• We can eliminate M and obtain

max \bm{w},ω_0 1 $\|w\|$ subject to $y_{i} f(\boldsymbol{x}_{i}) \geq 1, i \in \{1,2,...\,,n\}$

• This is equivalent to

 $\min_{i} ||\boldsymbol{w}||^2$ subject to $y_i f(\boldsymbol{x}_i) \geq 1, i \in \{1, 2, ..., n\}$ w,w_0

- **–** The standard formulation of hard margin SVMs
- There are data points x_i satisfying $y_if(\pmb{x}_i)=\mathsf{1}$, called support v ϵ

Margin

Soft Margin (1/2)

- Datasets are not often separable
- Extend SV classification to soft margin by relaxing $\langle w, x \rangle + w$
- Change the constraint $y_if(\pmb{x}_i)\geq 1$ using the slack variable ξ_i $y_i f(x_i) = y_i (\langle w, x \rangle + w_0) \ge 1 - \xi_i, \quad i \in \{1, 2, ..., n\}$

Soft Margin (2/2)

• The formulation of soft margin SVM (C-SVM) is

min $\bm{w},\!\omega_0,\! \bm{\xi}$ 1 2 $||w||^2 + C$ \overline{a} $i \in \{1,2,...,n\}$ ξ_i s.t. $y_i f(x_i) \ge 1 - \xi_i, \xi_i \ge 0, i \in \{1, 2, ..., n\}$ - C is called the regularization parameter

Soft Margin

Data Point Location

- $y_i f(x_i) > 1$: x_i is outside margin
	- **–** These points do not affect to the classification hyperplane
- $y_i f(\mathbf{x}_i) = 1$: \mathbf{x}_i is on margin
- $y_i f(\boldsymbol{x}_i) < 1$: \boldsymbol{x}_i is inside margin
	- **–** These points do not exist in hard margin
- Points on margin and inside margin are support vectors

Dual Problem (1/2)

- The formulation of C-SVM min $\bm{w},\!\omega_0,\!$ š 1 2 $||w||^2 + C$ \overline{a} $i \in \{1,2,...,n\}$ ξ_i s.t. $y_i f(x_i) \ge 1 - \xi_i, \xi_i \ge 0, i \in \{1, 2, ..., n\}$ is called the primal problem
- This is usually solved via the dual problem

Dual Problem (2/2)

• The dual problem is given as

$$
\max_{\alpha} -\frac{1}{2} \sum_{i,j \in [n]} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle + \sum_{i \in [n]} \alpha_i
$$

s.t.
$$
\sum_{i \in [n]} \alpha_i y_i = 0, \ 0 \le \alpha_i \le C, i \in [n]
$$

Extension to Nonlinear Classification

 \cdot To achieve nonlinear classification, convert each data point t some point $\phi(x)$, and $f(x)$ becomes

$$
f(\mathbf{x}) = \langle \mathbf{w}, \phi(\mathbf{x}) \rangle + w_0
$$

• The dual problem becomes

$$
\max_{\alpha} -\frac{1}{2} \sum_{i,j \in [n]} \alpha_i \alpha_j y_i y_j \langle \phi(x_i), \phi(x_j) \rangle + \sum_{i \in [n]} \alpha_i \text{ s.t. } \sum_{i \in [n]} \alpha_i y_i = 0, 0 \leq
$$

- $\,$ Only the dot product $\langle \phi({\bm{x}}_i), \phi({\bm{x}}_j) \rangle$ is used!
- We do not even need to know $\phi(\bm{x}_i)$ and $\phi(\bm{x}_j)$

C-SVM with Kernel Trick

• Using the kernel function K such that $K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \langle \phi(\boldsymbol{x}_i), \phi(\boldsymbol{x}_j) \rangle$ have

$$
\max_{\alpha} -\frac{1}{2} \sum_{i,j \in [n]} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j) + \sum_{i \in [n]} \alpha_i
$$

s.t.
$$
\sum_{i \in [n]} \alpha_i y_i = 0, \ 0 \le \alpha_i \le C, i \in [n]
$$

- The technique of using K is called kernel trick

• We can use graph kernels for $K!$

Positive Definite Kernel

- A kernel $K : \Omega \times \Omega \rightarrow \mathbb{R}$ is a positive definite kernel if
	- (i) $K(x, y) = K(y, x)$
	- (ii) For $x_1, x_2, ..., x_n$, the $n \times n$ matrix

$$
(K_{ij}) = \begin{bmatrix} K(x_1, x_1) & \dots & K(x_n, x_1) \\ \dots & \dots & \dots \\ K(x_1, x_n) & \dots & K(x_n, x_n) \end{bmatrix}
$$

is positive (semi-)definite, that is, $\sum_{i,j=1}^{n} c_i c_j K(x_i, x_j) \geq 0$ for any $c_1, c_2, ..., c_n \in \mathbb{R}$

 $(K_{ij}) \in \mathbb{R}^{n \times n}$ is called the Gram matrix

Popular Positive Definite Kernels

• Linear Kernel

 $K(x, y) = \langle x, y \rangle$

• Gaussian (RBF) kernel

$$
K(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{1}{\sigma^2}||\mathbf{x} - \mathbf{y}||^2\right)
$$

• Polynomial Kernel $K(x, y) = (\langle x, y \rangle + c)^c$ $c, d \in \mathbb{R}$

Simple Kernels

- The all-ones kernel $K(x, y) = 1$
- The delta (Dirac) kernel

$$
K(x, y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{otherwise} \end{cases}
$$

Closure Properties of Kernels

- For two kernels K_1 and K_2 , $K_1 + K_2$ is a kernel
- For two kernels K_1 and K_2 , the product $K_1\cdot K_2$ is a kernel
- For a kernel K and a positive scalar $\lambda \in \mathbb{R}^+$, λK is a kernel
- For a kernel K on a set D , its zero-extension:

$$
K_0(x, y) = \begin{cases} K(x, y) & \text{if } x, y \in D, \\ 0 & \text{otherwise} \end{cases}
$$

is a kernel

Summary

- Introduction to ML and its basic concepts
- Graph kernels for graph structured data
- Kernel-based ML methods, such as SVM
	- There are many other options, e.g. kernel PCA, kernel k-means ridge regression, ...