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Example of Learning from Data
(frommlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

• 1, 2, 4, 7,… →What are succeeding numbers?
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Example of Learning from Data
(frommlss.tuebingen.mpg.de/2013/schoelkopf_whatisML_slides.pdf)

• 1, 2, 4, 7,… →What are succeeding numbers?
1, 2, 4, 7, 11, 16, ... (𝑎𝑛 = 𝑎𝑛−1 + 𝑛 − 1)
1, 2, 4, 7, 12, 20, ... (𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2 + 1)
1, 2, 4, 7, 13, 24, ... (𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2 + 𝑎𝑛−3)
1, 2, 4, 7, 14, 28 (divisors of 28)
1, 2, 4, 7, 1, 1, 5, ... (𝜋 = 3.1415… and 𝑒 = 2.718… )

• 1344 results (!) in the online encyclopedia (https://oeis.org/)
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Learning as Scientific Problem
• Which is the correct answer (or generalization)
for succeeding numbers of 1, 2, 4, 7,… ?
– Any answer is possible!
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Learning as Scientific Problem
• Which is the correct answer (or generalization)
for succeeding numbers of 1, 2, 4, 7,… ?
– Any answer is possible!

• We should take two points into consideration:
(i) We need to formalize the problem of “learning”

◦ There are two agents (teacher and learner) in learning,
which are different from “computation”

(ii) Learning is an infinite process
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Learning of Binary Classifier
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Learning of Binary Classifier

wx + b = 0
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Example: Perceptron (by F. Rosenblatt, 1958)

• Learning target: two subsets 𝐹, 𝐺 ⊆ ℝ𝑑 s.t. 𝐹 ∩ 𝐺 = ∅
– Assumption: 𝐹 and 𝐺 are linearly separable:
There exists a function (classifier) 𝑓∗(𝒙) = ⟨𝒘∗,𝒙⟩ + 𝑏 s.t.
𝑓∗(𝒙) > 0 ∀𝒙 ∈ 𝐹, 𝑓∗(𝒙) < 0 ∀𝒙 ∈ 𝐺
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• Learning target: two subsets 𝐹, 𝐺 ⊆ ℝ𝑑 s.t. 𝐹 ∩ 𝐺 = ∅
– Assumption: 𝐹 and 𝐺 are linearly separable:
There exists a function (classifier) 𝑓∗(𝒙) = ⟨𝒘∗,𝒙⟩ + 𝑏 s.t.
𝑓∗(𝒙) > 0 ∀𝒙 ∈ 𝐹, 𝑓∗(𝒙) < 0 ∀𝒙 ∈ 𝐺

• Hypotheses: hyperplanes on ℝ𝑑

– If we consider a linear equation 𝑓(𝒙) = ⟨𝒘,𝒙⟩ + 𝑏,
each line can be uniquely specified by a pair of
two parameters (𝒘, 𝑏) (hypothesis)

4/45



Example: Perceptron (by F. Rosenblatt, 1958)

• Data: a sequence of pairs (𝒙1, 𝑦1), (𝒙2, 𝑦2),…
– (𝒙𝒊, 𝑦𝑖): (a real-valued vector in ℝ𝑑, a label)
– 𝒙𝑖 ∈ 𝐹 ∪ 𝐺, 𝑦𝑖 ∈ {1,−1},
𝑦𝑖 = 1 (𝑦𝑖 = −1) if 𝒙𝑖 ∈ 𝐹 (𝒙𝑖 ∈ 𝐺)
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Learning Model for Perceptron

F
G A hypothesis, a hyperplane

in general, is uniquely speci�ed
by a pair (w, b) 

(xi, 1)
(xj, –1) Data

f(x) = wx + b = 0
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Learning Procedure of Perceptron
1. 𝒘← 0, 𝑏 ← 0 (or a small random value) // initialization
2. for 𝑖 = 1, 2, 3,… do
3. Receive 𝑖-th pair (𝒙𝑖 , 𝑦𝑖)
4. Compute 𝑎 =∑𝑑

𝑗=1𝑤
𝑗𝑥𝑗𝑖 + 𝑏

5. if 𝑦𝑖 ⋅ 𝑎 < 0 then // 𝒙𝑖 is misclassified
6. 𝒘← 𝒘 + 𝑦𝑖𝒙𝑖 // update the weight
7. 𝑏 ← 𝑏 + 𝑦𝑖 // update the bias
8. end if
9. end for
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Correctness of Perceptron
• It is guaranteed that a perceptron always converges
to a correct classifier
– A correct classifier is a function 𝑓 s.t.

𝑓(𝒙) > 0 ∀𝒙 ∈ 𝐹,
𝑓(𝒙) < 0 ∀𝒙 ∈ 𝐺

– The convergence theorem
• Note: there are (infinitely) many functions
that correctly classify 𝐹 and 𝐺
– A perceptron converges to one of them
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Summary: Perceptron

Target Two disjoint subsets of ℝ𝑑

Representation Two parameters (𝒘, 𝑏) of linear
equation 𝑓(𝒙) = ⟨𝒘,𝒙⟩ + 𝑏

Data Real vectors from target subsets
Algorithm Perceptron
Correctness Convergence theorem
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What is Graph?
• A graph is an object consisting of vertices (nodes) connected with
edges
– Many examples in real-world, e.g., chemical compounds

• A graph is directed if the edges are directed,
otherwise it is undirected

• A graph is written as 𝐺 = (𝑉, 𝐸), where
𝑉 is a vertex set and 𝐸 is an edge set

• Labels can be associated with vertices and/or edges
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Example of Graph

1

3

24

• A graph 𝐺 = (𝑉, 𝐸, 𝜙)
– 𝑉 = {1, 2, 3, 4}
– 𝐸 = {{1, 2}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
– 𝜙(1) = green, 𝜙(2) = blue,
𝜙(3) = red, 𝜙(4) = blue

– 𝜙({1, 2}) = zigzag, 𝜙({1, 4}) = straight,
𝜙({2, 3}) = zigzag, 𝜙({2, 4}) = straight,
𝜙({3, 4}}) = straight
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Example of Graph

1

3

24

• The adjacency matrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

⎤
⎥
⎥
⎥
⎦
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ML on Graphs
• How to perform machine learning on graphs?

– Each object is a graph, so we have a collection of graphs
• Classification (or regression) on graphs is nontrivial problem

– The difficulty comes from the fact that measuring the similarity (or
distance) between graphs is nontrivial

• Graph kernel computes the similarity between graphs
• Graph Neural Networks are recently studied, while there is no
significant difference between their performances
– They share the core idea (message passing)
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Similarity between Graphs
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Similarity between Graphs

Similarity = 14

Similarity = 12

Similarity = 12

Graph kernel
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Kernels on Structured Data
• Given objects 𝑋 and 𝑌, decompose them into substructures 𝑆 and
𝑇

• The R-convolution kernel 𝐾𝑅 by Haussler (1999) is:
𝐾𝑅(𝑋,𝑌) =

∑

𝑠∈𝑆,𝑡∈𝑇
𝐾base(𝑠, 𝑡)

– e.g. 𝑋 is a graph and 𝑆 is the set of all subgraphs
• Since naïvely computing this kernel is expensive,
many efficient graph kernels have been propsoed
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Example

G G’
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Vertex Label Histogram Kernel

2G
G’

1 1
2 0 1

KVH(G, G’ ) = 2·2 + 1·0 + 1·1 =5

G G’
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Edge Label Histogram Kernel

G G’

3 2
1 2

G
G’

KEH(G, G’ ) = 3·1 + 2·2 = 7
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Vertex-Edge Label Histogram Kernel

G G’

1 1 1 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 0 2 0 0 0

G
G’

KVEH(G, G’ ) = 3
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Product Graph
• The direct product 𝐺× = (𝑉×, 𝐸×, 𝜙×) of 𝐺 = (𝑉, 𝐸, 𝜙),
𝐺′ = (𝑉′, 𝐸′, 𝜙′):
𝑉× = { (𝑣, 𝑣′) ∈ 𝑉 × 𝑉′ ∣ 𝜙(𝑣) = 𝜙′(𝑣′) },

𝐸× = { ((𝑢, 𝑢′), (𝑣, 𝑣′)) ∈ 𝑉× × 𝑉×
|||||||
(𝑢, 𝑣) ∈ 𝐸, (𝑢′, 𝑣′) ∈ 𝐸′,
𝜙(𝑢, 𝑣) = 𝜙′(𝑢′, 𝑣′) }

– All labels are inherited
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Example of Product Graph

1

3

24

(2,5)

(2,7)

(3,6)

(4,5)

(4,7)
5

6

7
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𝑘-Step RandomWalk Kernal
• The 𝑘-step (fixed-length-𝑘) random walk kernel
between 𝐺 and 𝐺′:

𝐾𝑘
×(𝐺,𝐺′) =

|𝑉×|∑

𝑖,𝑗=1

[
𝜆0𝐴0

× + 𝜆1𝐴1
× + 𝜆2𝐴2

× +⋯ + 𝜆𝑘𝐴𝑘
×

]

𝑖𝑗

(𝜆𝑙 > 0)
– 𝐴×: The adjacency matrix of the product graph
– The 𝑖𝑗 entry of 𝐴𝑛

× shows the number of paths from 𝑖 to 𝑗

21/45



Geometric RandomWalk Kernel (1/2)
• 𝐾∞

× can be directly computed if 𝜆𝓁 = 𝜆𝓁 (geometric series),
resulting in the geometric random walk kernel:

𝐾GR(𝐺,𝐺′) =
|𝑉×|∑

𝑖,𝑗=1

[
𝜆0𝐴0

× + 𝜆1𝐴1
× + 𝜆2𝐴2

× + 𝜆3𝐴3
× +⋯

]
𝑖𝑗

=
|𝑉×|∑

𝑖,𝑗=1
[
∞∑

𝓁=0
𝜆𝓁𝐴𝓁

×]
𝑖𝑗

=
|𝑉×|∑

𝑖,𝑗=1

[
(𝐈 − 𝜆𝐴×)−1

]
𝑖𝑗
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Geometric RandomWalk Kernel (2/2)
• Geometric random walk kernel is well-defined only if 𝜆 < 1∕𝜇×,max
(𝜇×,max is the max. eigenvalue of 𝐴×)

• 𝛿× (min. degree) ≤ 𝑑× (average degree) ≤ 𝜇×,max ≤ ∆× (max. degree)
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Weisfeiler–Lehman Kernel

4

1 1

5 2

3 4

1 2

2 5

3

G G’

11

6 6

13 8

10 12

6 7

9 13

10

G G’

G G’

4,1135

5,234 2,35

3,245

1,4 1,4

4,1235

2,45 5,234

3,245

1,4 2,3

1,4 6
7
8
9

10
11
12
13

2,3
2,35
2,45

3,245
4,1135
4,1235
5,234

Given graphs 1st iteration

Re-labeling after 1st iteration After 1st iteration
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Weisfeiler–Lehman Kernel
• The kernel value becomes:

⎡
⎢
⎢
⎣

label
𝜙(𝐺)(1)
𝜙(𝐺′)(1)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1 2 3 4 5 6 7 8 9 10 11 12 13
2 1 1 1 1 2 0 1 0 1 1 0 1
1 2 1 1 1 1 1 0 1 1 0 1 1

⎤
⎥
⎥
⎦

,

𝐾1
WL(𝐺,𝐺

′) = 11

• An important building block of GNNs
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Performance Comparison
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graphkernels Package
• A package for graph kernels available in R and Python
• R:
https://CRAN.R-project.org/package=graphkernels

• Python:
https://pypi.org/project/graphkernels/

• Paper:
https://doi.org/10.1093/bioinformatics/btx602
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Kernel-based Classification: SVM
• A dataset 𝐷 is separable by 𝑓 ⇐⇒ 𝑦𝑖𝑓(𝒙𝑖) > 0, ∀𝑖 ∈ {1, 2,… , 𝑛}
• The margin is the distance from the classification hyperplane to
the closest data point

• Support vector machines (SVMs) tries to find a hyperplane that
maximizes the margin
– Can be viewed as an extension of perceptron
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Margin

Margin

⟨w, x⟩ + w0 = 0
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Formulation of SVMs
• The distance from a point 𝒙𝑖 to a hyperplane
𝑓(𝒙) = ⟨𝒘,𝒙⟩ + 𝑤0 = 0 is
|𝑓(𝒙𝑖)|
‖𝒘‖

=
|||⟨𝒘,𝒙𝑖⟩ + 𝑤0

|||
‖𝒘‖

• The margin maximization problem can be written as

max
𝒘,𝑤0,𝑀

𝑀
‖𝒘‖

subject to 𝑦𝑖𝑓(𝒙𝑖) ≥ 𝑀, 𝑖 ∈ {1, 2,… , 𝑛}

– 𝑀 = min𝑖∈{1,2,…,𝑛} |||⟨𝒘, 𝑥𝑖⟩ + 𝑤0
|||
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Hard Margin SVMs
• We can eliminate𝑀 and obtain
max
𝒘,𝑤0

1
‖𝒘‖

subject to 𝑦𝑖𝑓(𝒙𝑖) ≥ 1, 𝑖 ∈ {1, 2,… , 𝑛}

• This is equivalent to
min
𝒘,𝑤0

‖𝒘‖2 subject to 𝑦𝑖𝑓(𝒙𝑖) ≥ 1, 𝑖 ∈ {1, 2,… , 𝑛}

– The standard formulation of hard margin SVMs
– There are data points 𝑥𝑖 satisfying 𝑦𝑖𝑓(𝒙𝑖) = 1, called support vectors
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Margin

Margin

⟨w, x⟩ + w0 = 0

Support vector
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Soft Margin (1/2)
• Datasets are not often separable
• Extend SV classification to soft margin by relaxing ⟨𝒘,𝒙⟩ + 𝑤0 ≥ 1
• Change the constraint 𝑦𝑖𝑓(𝒙𝑖) ≥ 1 using the slack variable 𝜉𝑖 to
𝑦𝑖𝑓(𝒙𝑖) = 𝑦𝑖 (⟨𝒘,𝒙⟩ + 𝑤0) ≥ 1 − 𝜉𝑖 , 𝑖 ∈ {1, 2,… , 𝑛}
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Soft Margin (2/2)
• The formulation of soft margin SVM (C-SVM) is

min
𝒘,𝑤0,𝝃

1
2‖𝒘‖

2 + 𝐶
∑

𝑖∈{1,2,…,𝑛}
𝜉𝑖

s.t. 𝑦𝑖𝑓(𝒙𝑖) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 ∈ {1, 2,… , 𝑛}
– 𝐶 is called the regularization parameter
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Soft Margin

C is large C is small
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Data Point Location
• 𝑦𝑖𝑓(𝒙𝑖) > 1: 𝒙𝑖 is outside margin

– These points do not affect to the classification hyperplane
• 𝑦𝑖𝑓(𝒙𝑖) = 1: 𝒙𝑖 is on margin
• 𝑦𝑖𝑓(𝒙𝑖) < 1: 𝒙𝑖 is inside margin

– These points do not exist in hard margin
• Points on margin and inside margin are support vectors
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Dual Problem (1/2)
• The formulation of C-SVM

min
𝒘,𝑤0,𝝃

1
2‖𝒘‖

2 + 𝐶
∑

𝑖∈{1,2,…,𝑛}
𝜉𝑖

s.t. 𝑦𝑖𝑓(𝒙𝑖) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 ∈ {1, 2,… , 𝑛}
is called the primal problem

• This is usually solved via the dual problem
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Dual Problem (2/2)
• The dual problem is given as

max
𝜶

−12
∑

𝑖,𝑗∈[𝑛]
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗⟨𝒙𝑖 ,𝒙𝑗⟩ +

∑

𝑖∈[𝑛]
𝛼𝑖

s.t.
∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 ∈ [𝑛]
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Extension to Nonlinear Classification
• To achieve nonlinear classification, convert each data point 𝒙 to
some point 𝜙(𝒙), and 𝑓(𝒙) becomes
𝑓(𝒙) = ⟨𝒘, 𝜙(𝒙)⟩ + 𝑤0

• The dual problem becomes

max
𝜶

−12
∑

𝑖,𝑗∈[𝑛]
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗⟨𝜙(𝒙𝑖), 𝜙(𝒙𝑗)⟩ +

∑

𝑖∈[𝑛]
𝛼𝑖 s.t.

∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 ∈ [𝑛]

– Only the dot product ⟨𝜙(𝒙𝑖), 𝜙(𝒙𝑗)⟩ is used!
– We do not even need to know 𝜙(𝒙𝑖) and 𝜙(𝒙𝑗)
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C-SVM with Kernel Trick
• Using the kernel function 𝐾 such that 𝐾(𝒙𝑖 ,𝒙𝑗) = ⟨𝜙(𝒙𝑖), 𝜙(𝒙𝑗)⟩, we
have
max
𝜶

−12
∑

𝑖,𝑗∈[𝑛]
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝒙𝑖 ,𝒙𝑗) +

∑

𝑖∈[𝑛]
𝛼𝑖

s.t.
∑

𝑖∈[𝑛]
𝛼𝑖𝑦𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 ∈ [𝑛]

– The technique of using 𝐾 is called kernel trick
• We can use graph kernels for 𝐾!
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Positive Definite Kernel
• A kernel 𝐾 ∶ Ω × Ω→ ℝ is a positive definite kernel if

(i) 𝐾(𝑥, 𝑦) = 𝐾(𝑦, 𝑥)
(ii) For 𝑥1, 𝑥2,… , 𝑥𝑛, the 𝑛 × 𝑛matrix

(𝐾𝑖𝑗) =
⎡
⎢
⎢
⎣

𝐾(𝑥1, 𝑥1) … 𝐾(𝑥𝑛, 𝑥1)
… … …

𝐾(𝑥1, 𝑥𝑛) … 𝐾(𝑥𝑛, 𝑥𝑛)

⎤
⎥
⎥
⎦

is positive (semi-)definite, that is,∑𝑛
𝑖,𝑗=1 𝑐𝑖𝑐𝑗𝐾(𝑥𝑖 , 𝑥𝑗) ≥ 0

for any 𝑐1, 𝑐2,… , 𝑐𝑛 ∈ ℝ
– (𝐾𝑖𝑗) ∈ ℝ𝑛×𝑛 is called the Gram matrix
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Popular Positive Definite Kernels
• Linear Kernel
𝐾(𝒙,𝒚) = ⟨𝒙,𝒚⟩

• Gaussian (RBF) kernel

𝐾(𝒙,𝒚) = exp (− 1
𝜎2
‖𝒙 − 𝒚‖2)

• Polynomial Kernel
𝐾(𝒙,𝒚) = (⟨𝒙,𝒚⟩ + 𝑐)𝑐 𝑐, 𝑑 ∈ ℝ
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Simple Kernels
• The all-ones kernel
𝐾(𝒙,𝒚) = 1

• The delta (Dirac) kernel

𝐾(𝒙,𝒚) = { 1 if 𝒙 = 𝒚,
0 otherwise
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Closure Properties of Kernels
• For two kernels 𝐾1 and 𝐾2, 𝐾1 + 𝐾2 is a kernel
• For two kernels 𝐾1 and 𝐾2, the product 𝐾1 ⋅ 𝐾2 is a kernel
• For a kernel 𝐾 and a positive scalar 𝜆 ∈ ℝ+, 𝜆𝐾 is a kernel
• For a kernel 𝐾 on a set 𝐷, its zero-extension:

𝐾0(𝒙,𝒚) = { 𝐾(𝒙,𝒚) if 𝒙,𝒚 ∈ 𝐷,
0 otherwise

is a kernel
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Summary
• Introduction to ML and its basic concepts
• Graph kernels for graph structured data
• Kernel-based ML methods, such as SVM

– There are many other options, e.g. kernel PCA, kernel 𝑘-means, kernel
ridge regression, ...
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