Publications & Awards
2024
- Conference
Neural Tangent Kernels for Axis-Aligned Tree Ensembles
Kanoh, R., Sugiyama, M.
The 41st International Conference on Machine Learning (ICML 2024), 2024.
[BibTeX]
[Paper]
[Poster]
[Code]
- Conference
Bringing Structure to Naturalness: On the Naturalness of ASTs
Pârțachi, P.-P., Sugiyama, M.
46th International Conference on Software Engineering (ICSE 2024), Posters Track, 2024.
[BibTeX]
[Paper]
[DOI: 10.1145/3639478.3643517]
- Review
Primer on Graph Machine Learning
Yamada, M., Sugiyama, M.
Drug Development Supported by Informatics, Springer, 87–102, 2024.
[BibTeX]
[Paper]
- Review
Subgraph-Based Molecular Graph Generation
Yamada, M., Sugiyama, M.
Drug Development Supported by Informatics, Springer, 103–119, 2024.
[BibTeX]
[Paper]
2023
- Journal
Unsupervised Tensor Based Feature Extraction from Multivariate Time Series
Matsue, K., Sugiyama, M.
IEEE Access, 2023.
[BibTeX]
[DOI: 10.1109/ACCESS.2023.3326073]
- Journal
How Graph Features from Message Passing Affect Graph Classification and Regression?
Yamada, M., Sugiyama, M.
Intelligent Data Analysis, 2023. (in press)
[BibTeX]
[DOI: 10.3233/IDA-227190]
- Journal
Molecular Graph Generation by Decomposition and Reassembling
Yamada, M., Sugiyama, M.
ACS Omega, 2023.
[BibTeX]
[arXiv]
[DOI: 10.1021/acsomega.3c01078]
- Journal
Artificial Neural Network Encoding of Molecular Wavefunctions for Quantum Computing
Hagai, M., Sugiyama, M., Tsuda, K., Yanai, T.
Digital Discovery, 2023.
[BibTeX]
[Paper]
[DOI: 10.1039/d2dd00093h]
- Journal
Non-negative Low-rank Approximations for Multi-dimensional Arrays on Statistical Manifold
Ghalamkari, K., Sugiyama, M.
Information Geometry, 2023.
[BibTeX]
[Paper]
[DOI: 10.1007/s41884-023-00100-5]
- Conference
Many-body Approximation for Non-negative Tensors
Ghalamkari, K., Sugiyama, M., Kawahara, Y.
Advances in Neural Information Processing Systems (NeurIPS 2023), 2023.
[BibTeX]
[arXiv]
[OpenReview]
[Poster]
- Conference
Analyzing Tree Architectures in Ensembles via Neural Tangent Kernel
Kanoh, R., Sugiyama, M.
The 11th International Conference on Learning Representations (ICLR 2023), 2023.
[BibTeX]
[arXiv]
[OpenReview]
[Poster]
- Workshop
Energy-Based Non-Negative Tensor Factorization via Multi-Body Modeling
Ghalamkari, K., Sugiyama, M.
ICML 2023 Workshop Duality Principles for Modern Machine Learning, 2023.
- Workshop
Investigating Axis-Aligned Differentiable Trees through Neural Tangent Kernels
Kanoh, R., Sugiyama, M.
ICML 2023 Workshop Differentiable Almost Everything, 2023.
- Award
2023 JSAI Annual Conference Award
Ghalamkari, K., Sugiyama, M.
- Award
2023 JSAI Annual Conference Award
Kanoh, R., Sugiyama, M.
2022
- Journal
A Drive-by Bridge Inspection Framework Using Non-Parametric Clusters over Projected Data Manifolds
Cheema, P., Makki Alamdari, M., Chang, K. C., Kim, C. W., Sugiyama, M.
Mechanical Systems and Signal Processing (MSSP), 2022.
[BibTeX]
[Paper]
[DOI: 10.1016/j.ymssp.2022.109401]
- Conference
A Neural Tangent Kernel Perspective of Infinite Tree Ensembles
Kanoh, R., Sugiyama, M.
The 10th International Conference on Learning Representations (ICLR 2022), 2022.
[BibTeX]
[arXiv]
[OpenReview]
[Poster]
- Conference
Fast Rank-1 NMF for Missing Data with KL Divergence
Ghalamkari, K., Sugiyama, M.
The 25th International Conference on Artificial Intelligence and Statistics (AISTATS 2022), 2022.
[BibTeX]
[Paper]
[arXiv]
[Code]
[Poster]
2021
- Journal
Unsupervised Feature Extraction from Multivariate Time Series for Outlier Detection
Matsue, K., Sugiyama, M.
Intelligent Data Analysis, 2021.
[BibTeX]
[Paper]
[DOI: 10.3233/IDA-216128]
- Conference
Fast Tucker Rank Reduction for Non-Negative Tensors Using Mean-Field Approximation
Ghalamkari, K., Sugiyama, M.
Advances in Neural Information Processing Systems (NeurIPS 2021), 2021.
[BibTeX]
[arXiv]
[Paper]
[Code]
[Slide]
[Poster]
- Conference
Investigating Overparameterization for Non-Negative Matrix Factorization in Collaborative Filtering
Kawakami, Y., Sugiyama, M.
The 15th ACM Conference on Recommender Systems (RecSys 2021), Late-Breaking Results track, 2021.
[BibTeX]
[Paper]
[DOI: 10.1145/3460231.3478854]
- Conference
Unsupervised Tensor based Feature Extraction and Outlier Detection for Multivariate Time Series
Matsue, K., Sugiyama, M.
The 8th IEEE International Conference on Data Science and Advanced Analytics (DSAA 2021), 2021.
[BibTeX]
[Paper]
[Code]
[DOI: 10.1109/DSAA53316.2021.9564117]
- Conference
Job Recommendation with Career Graphs
Tanida, H., Sugiyama, M., Shikauchi, M., Oba, S.
The 8th IEEE International Conference on Data Science and Advanced Analytics (DSAA 2021), Industrial Track, 2021.
[BibTeX]
- Conference
Hierarchical Probabilistic Model for Blind Source Separation via Legendre Transformation
Luo, S., Azizi, L., Sugiyama, M.
The 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021), 2021.
[BibTeX]
[arXiv]
[Paper]
- Award
2021 JSAI Incentive Award
Kanoh, R., Sugiyama, M.
- Award
2021 JSAI Annual Conference Award
Ghalamkari, K., Sugiyama, M.
2020
- Journal
Artificial Neural Networks Applied as Molecular Wave Function Solvers
Peng-Jian, Y., Sugiyama, M., Tsuda, K., Yanai, T.
Journal of Chemical Theory and Computation, 2020.
[BibTeX]
[DOI: 10.1021/acs.jctc.9b01132]
- Conference
Testing Machine Learning Code using Polyhedral Region
Ahmed, M. S., Ishikawa, F., Sugiyama, M.
The 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2020), Visions and Reflections Track, 2020.
[BibTeX]
[Paper]
[DOI: 10.1145/3368089.3417043]
- Conference
Coordinate Descent Method for Log-Linear Model on Posets
Hayashi, S., Sugiyama, M., Matsushima, S.
The 7th IEEE International Conference on Data Science and Advanced Analytics (DSAA 2020), 2020.
[BibTeX]
[DOI: 10.1109/DSAA49011.2020.00022]
- Workshop
Unintended Effects on Adaptive Learning Rate for Training Neural Network with Output Scale Change
Kanoh, R., Sugiyama, M.
NeurIPS 2020 Workshop: Beyond BackPropagation, 2020.
[BibTeX]
- Workshop
Convex Optimization for Blind Source Separation on Statistical Manifolds
Luo, S., Azizi, L., Sugiyama, M.
NeurIPS 2020 Workshop: Differential Geometry meets Deep Learning, 2020.
[BibTeX]
- Workshop
Towards Geometric Understanding of Low-Rank Approximation
Ghalamkari, K., Sugiyama, M.
NeurIPS 2020 Workshop: Differential Geometry meets Deep Learning, 2020.
[BibTeX]
- Workshop
Sample Space Truncation on Boltzmann Machines
Sugiyama, M., Tsuda, K., Nakahara, H.
NeurIPS 2020 Workshop: Deep Learning through Information Geometry, 2020.
[BibTeX]
- Workshop
The Volume of Non-Restricted Boltzmann Machines and Their Double Descent Model Complexity
Cheema, P., Sugiyama, M.
NeurIPS 2020 Workshop: Deep Learning through Information Geometry, 2020.
Award (This paper won the best paper award)
[BibTeX]
- Workshop
Learning Joint Intensity in a Multivariate Poisson Process on Statistical Manifolds
Luo, S., Zhou, F., Azizi, L., Sugiyama, M.
NeurIPS 2020 Workshop: Deep Learning through Information Geometry, 2020.
[BibTeX]
- Workshop
A Deep Architecture for Log-Linear Models
Luo, S., Cripps, S., Sugiyama, M.
NeurIPS 2020 Workshop: Deep Learning through Information Geometry, 2020.
[BibTeX]
2019
- Journal
Legendre Decomposition for Tensors
Sugiyama, M., Nakahara, H., Tsuda, K.
Journal of Statistical Mechanics: Theory and Experiment, 2019.
[BibTeX]
[Paper]
[DOI: 10.1088/1742-5468/ab3196]
- Journal
Summarizing Significant Subgraphs by Probabilistic Logic Programming
Bellodi, E., Sato, K., Sugiyama, M.
Intelligent Data Analysis, 2019.
[BibTeX]
[DOI: 10.3233/IDA-184339]
- Conference
Finding Statistically Significant Interactions between Continuous Features
Sugiyama, M., Borgwardt, K.M.
The 28th International Joint Conference on Artificial Intelligence (IJCAI 2019), 2019.
[BibTeX]
[arXiv]
[Paper]
[Code]
[Slide]
[Poster]
[DOI: 10.24963/ijcai.2019/484]
- Conference
Bias-Variance Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions
Luo, S., Sugiyama, M.
The 33rd AAAI Conference on Artificial Intelligence (AAAI-19), 2019.
[BibTeX]
[arXiv]
[Paper]
[Code]
[DOI: 10.1609/aaai.v33i01.33014488]
2018
- Journal
graphkernels: R and Python Packages for Graph Comparison
Sugiyama, M., Ghisu, E., Llinares-López, F., Borgwardt, K.M.
Bioinformatics, 34(3), 530—532, 2018
[BibTeX]
[Paper]
[Library (R)]
[Library (Python)]
[DOI: 10.1093/bioinformatics/btx602]
- Conference
Legendre Decomposition for Tensors
Sugiyama, M., Nakahara, H., Tsuda, K.
Advances in Neural Information Processing Systems (NeurIPS2018), 2018.
[BibTeX]
[arXiv]
[Paper]
[Code]
[Slide]
[Poster]
[Video]
- Workshop
Learning Graph Representation via Formal Concept Analysis
Yoneda, Y., Sugiyama, M., Washio, T.
NeurIPS 2018 Workshop on Relational Representation Learning, 2018.
[BibTeX]
[arXiv]
- Award
2018 JSAI Incentive Award
Yoneda, Y., Sugiyama, M., Washio, T.
2017
- Conference
Tensor Balancing on Statistical Manifold
Sugiyama, M., Nakahara, H., Tsuda, K.
The 34th International Conference on Machine Learning (ICML 2017), 2017.
[BibTeX]
[arXiv]
[Paper]
[Code]
[Slide]
[Poster]
[Video]
- Review
Searching for Bacterial Pathogens in the Digital Ocean—Executive Summary
Giuliano, L., Dorman, C., Bowler, C., Sugiyama, M., Vezzulli, L., Czerucka, D., Le Roux, F., D'Auria, G., Troussellier, M., Briand, F.
CIESM Workshop Monograph, 49, 5–25, 2017.
[BibTeX]
[Paper]
- Review
Finding Statistically Significant Patterns from Data
Sugiyama, M.
CIESM Workshop Monograph, 49, 53–58, 2017.
[BibTeX]
- Review
Pattern Mining with Statistical Significance (in Japanese)
Sugiyama, M.
Communications of the Operations Research Society of Japan, 62(4), 226–232, 2017.
[BibTeX]
[Paper]
- Award
2017 JSAI Incentive Award
Sugiyama, M., Nakahara, H., Tsuda, K.